(一)图——图论笔记系列

1,图论

1,1,图的基本概念

define1:无向图,是由一个有序二元组G<V,E>;V表示顶点集,E表示边集,E中的元素为无向边。

define2:有向图,即无向图中所有的边均为有向边。

其中,相邻的称为邻接;两点确定的边称为他们是关联的。

无边关联的点称为孤立点,一条边关联的两个结点重合,称为环或自回路

注意:我们讨论的通常是有限图,其中|V|=n,|E|=0的图称为n阶零图;只有一个顶点的图称为平凡图

关联于同一结点的两条边称为平行边;不含平行边和环的图称为简单图,我们也主要讨论简单图。

define3:与v相关联的边的次数称为v的度数,有入度和出度之分,分别记为 d e g ( v ) − , d e g ( v ) + deg(v)^-,deg(v)^+ deg(v),deg(v)+

握手定理:一个图的度数是边的两倍。

推论:任一图中,奇度结点必有偶数个,结点的度数最多位n-1;

有向图中,入度=出度=边数。

1.2,图的基本分类

define4:无向简单图G,任意两个结点之间都有边相连,我们称之为完全图。n个结点的完全图记为 K n K_n Kn

相应的,有向简单图中,任意两结点之间都有一对方向相反的边相连,称之为有向完全图,记为 D n D_n Dn

其中,无向完全图的边数为 C n 2 = n ( n − 1 ) 2 C_n^2=\frac {n(n-1)}{2} Cn2=2n(n1),有向图变数为 n ( n − 1 ) n(n-1) n(n1)

define5:如果一个无向简单图中,每个结点的度数均为K,称该图为k-正则图。完全图 K n K_n Kn n ( n − 1 ) n(n-1) n(n1)正则图.典型的3-正则图为彼得森图

image-20201219094317770

define6:给定图G,以G中所有结点为结点集,能够使G成为完全图所添加的边,构成的图称为G的补图,记为 G ˉ \bar G Gˉ。可以看到G和G`合并后就是一个完全图了。

image-20201015105046877

define7:子图与生成子图。生成子图比较重要,对于生成子图的构造,必须顶点个数一样,然后按照边数的多数进行推演。下面是K4的所有生成子图:

image-20201219100618770 image-20201219101930438

1.3,图的同构

图论中,我们只关心结点之间是否有连线,而不在意结点的位置和连线的形状,因此,同一图的图形表示不唯一。

同构的必要条件:

1)结点数相等;2)边数相等;3)度数相同的结点数目相同,即度数序列相同。

两个图同构的判断非常困难,需要仔细考察图的结点和边的关联关系。

image-20201219094848319

1.4,图的连通性

define1:无向图中任意两个结点都是连通的,则称图是连通图

define2:D是有向图,若去掉各边的方向后是连通图,则称D是弱联通图

相应的,D中任意两结点都可达,D是强连通图

若D中任意两点至少一个可达另一个,则图D是单向连通图

define3:一条回路的起点和内部结点互不相同,称为

割点:删掉一个点后,子图不再连通。点割集:割点组成的集合,但不允许有多余的点。

注意:割点只能是一个点,而点割集可以是一个点,也可以是多个点的集合。

割边(桥):删掉一条边后,子图不再连通。边割集:割边组成的集合,但不允许有多余的边。

点连通度(连通度):最小的构成连通的点的个数。

点连通度:设G是无向连通图,如果G不是完全图,k(G)=min{|V1||V2}是G的点割集,称为图G的点连通度;

物理意义:要使G成为不连通的最少要删除的结点数。如果一个图的点连通度是1,最少删除一个结点,图变为不连通的

同理,边连通度类似。

二部图:若能将V分成V1和V2,使得G中的每条边的两个端点都是一个属于V1,一个属于V2,那么称为二部图。

二部图的判定:一个无向图是二部图当且仅当G中无奇数长度的回路。

image-20201216104530785

1.5,图的矩阵表示

1.5.1,无向图的关联矩阵:
image-20201129101939979 image-20201129102652799

无向图关联矩阵的性质:

设G=<V,E>是无向图,G的关联矩阵M(G)有以下的性质:
①每列元素之和均为2。这说明每条边关联两个结点。
②每行元素之和是对应结点的度数。
③所有元素之和是图各结点度数的和,也是边数的2倍。
④两列相同,则对应的两个边是平行边。
⑤某行元素全为零,则对应结点为孤立点。

1.5.2,无环有向图的关联矩阵
image-20201129102957307

无环有向图关联矩阵的性质:

设G=<V,E>是无环有向图,G的完全关联矩阵M(G)有以下的性质:
①每列有一个1和一个-1,这说明每条有向边有一个始点和一个终点。
②每行1的个数是对应结点的出度,-1的个数是对应结点的入度。
③所有元素之和是0,这说明所有结点出度的和等于所有结点入度的和。
④两列相同,则对应的两边是平行边。

1.5.3,有向图的邻接矩阵
image-20201129105804835

我们来考察 A l A^l Al的元素的意义: a i j a_{ij} aij表示vi到vj路径为l的通路的数目.

1.5.4,无向图的邻接矩阵
image-20201215222937005
1.5.5,有向图的可达矩阵
image-20201216110949450

可由邻接矩阵得到可达矩阵:即令R= A + A 2 + . . . + A n A+A^2+...+A^n A+A2+...+An,再将其中的非零元素置为1即可。

另外 A , A 2 , A 3 , A 4 A,A^2,A^3,A^4 A,A2,A3,A4分别是长度为1,2,3,4的通路所对应的描述,则vi到vj对应的通路长度即为aij。

tips:关联矩阵描述的是边和点的关系;而邻接矩阵描述的是点和点关系。

1.6,欧拉图与哈密顿图

欧拉通路:通过图(无向图或有向图)中所有边一次且仅一次行遍所有顶点的通路;

欧拉回路:通过图(无向图或有向图)中所有边一次且仅一次行遍所有顶点的回路;

欧拉图:具有欧拉回路的图。规定:平凡图是欧拉图;

半欧拉图:具有欧拉路而无欧拉回路的图。

欧拉图的判定:当且仅当图G中无奇度结点。

定理:无向图G具有一条欧拉路,当且仅当G是连通的且有零个或两个奇度结点。

哈密顿通路:经过图(有向图或无向图)中所有顶点一次且仅一次的通路;

哈密顿回路:经过图中所有顶点一次且仅一次的回路;

哈密顿图:具有哈密顿回路的图。规定:平凡图是哈密顿图;

半哈密顿图:具有哈密顿通路但不具有哈密顿回路的图。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值