机器学习概述与特征工程

机器学习概述与特征工程

1.思维导图

在这里插入图片描述

2.机器学习概述

2.1 人工智能概述

    达特茅斯会议-人工智能的起点
    机器学习是人工智能的一个实现途径
    深度学习是机器学习的一个方法发展而来
2.1.2 机器学习、深度学习能做些什么
        传统预测
        图像识别
        自然语言处理

2.2 什么是机器学习

    数据
    模型
    预测
    从历史数据当中获得规律?这些历史数据是怎么的格式?
2.2.3 数据集构成
        特征值 + 目标值

2.3 机器学习算法分类

    **监督学习**
        目标值:类别 - 分类问题
            k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归
        目标值:连续型的数据 - 回归问题
            线性回归、岭回归
    目标值:**无 - 无监督学习**
        聚类 k-means
    1、预测明天的气温是多少度? 回归
    2、预测明天是阴、晴还是雨? 分类
    3、人脸年龄预测? 回归/分类
    4、人脸识别? 分类

2.4 机器学习开发流程

    1)获取数据
    2)数据处理
    3)特征工程
    4)机器学习算法训练 - 模型
    5)模型评估
    6)应用

3.特征工程

3.1 数据集

3.1.1 可用数据集
        公司内部 百度
        数据接口 花钱
        数据集
        学习阶段可以用的数据集:
            1)sklearn
            2)kaggle
            3)UCI
        1 Scikit-learn工具介绍
3.1.2 sklearn数据集
  1 sklearn.datasets
                load_*  获取小规模数据集
                fetch_* 获取大规模数据集
  2 sklearn小数据集
                 sklearn.datasets.load_iris()
  3 sklearn大数据集
                sklearn.datasets.fetch_20newsgroups(data_home=None,subset=‘train’)
  4 数据集的返回值
                datasets.base.Bunch(继承自字典)
                dict["key"] = values
                bunch.key = values
from sklearn.datasets import load_iris
def datasets_demo():
    """
    sklearn数据集使用
    :return:
    """
    # 获取数据集
    iris = load_iris()
    print("鸢尾花数据集:\n", iris)
    print("查看数据集描述:\n", iris["DESCR"])
    print("查看特征值的名字:\n", iris.feature_names)
    print("查看特征值:\n", iris.data, iris.data.shape)
2.1.3 数据集的划分
        训练数据:用于训练,构建模型
        测试数据:在模型检验时使用,用于评估模型是否有效
            测试集 20%~30%
            sklearn.model_selection.train_test_split(arrays, *options)
            训练集特征值,测试集特征值,训练集目标值,测试集目标值
            x_train, x_test, y_train, y_test
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
def datasets_demo():
    """
    sklearn数据集使用
    :return:
    """
    # 获取数据集
    iris = load_iris()
    print("鸢尾花数据集:\n", iris)
    print("查看数据集描述:\n", iris["DESCR"])
    print("查看特征值的名字:\n", iris.feature_names)
    print("查看特征值:\n", iris.data, iris.data.shape)

    # 数据集划分
    x_train, x_test, y_train, y_test = train_test_split(
        iris.data, iris.target, test_size=0.2, random_state=22)
    print("训练集的特征值:\n", x_train, x_train.shape)

    return None

3.2 特征工程介绍

    算法 特征工程

3.2.1 为什么需要特征工程(Feature Engineering)

3.2.2 什么是特征工程

        sklearn 特征工程
        pandas 数据清洗、数据处理
            特征抽取/特征提取
                机器学习算法 - 统计方法 - 数学公式
                    文本类型 -》 数值
                    类型 -》 数值

3.3.1 特征提取

		sklearn.feature_extraction

3.3.2 字典特征提取 - 类别 -> one-hot编码

         sklearn.feature_extraction.DictVectorizer(sparse=True,…)
         vector 数学:向量 物理:矢量
             矩阵 matrix 二维数组
             向量 vector 一维数组
         父类:转换器类
         返回sparse矩阵
             sparse稀疏
                 将非零值 按位置表示出来
                 节省内存 - 提高加载效率
         应用场景:
             1)pclass, sex 数据集当中类别特征比较多
                 1、将数据集的特征-》字典类型
                 2、DictVectorizer转换
             2)本身拿到的数据就是字典类型
from sklearn.feature_extraction import DictVectorizer
def dict_demo():
    """
    字典特征抽取
    :return:
    """
    data = [{'city': '北京', 'temperature': 100}, {'city': '上海',
          'temperature': 60}, {'city': '深圳', 'temperature': 30}]
    # 1、实例化一个转换器类
    transfer = DictVectorizer(sparse=True)

    # 2、调用fit_transform()
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new.toarray(), type(data_new))
    print("特征名字:\n", transfer.get_feature_names())

    return None

结果

3.3.3 文本特征提取

     单词 作为 特征
         句子、短语、单词、字母
         特征:特征词

方法1:CountVectorizer
统计每个样本特征词出现的个数
stop_words停用的
停用词表
关键词:在某一个类别的文章中,出现的次数很多,但是在其他类别的文章当中出现很少

from sklearn.feature_extraction.text import CountVectorizer
def count_demo():
    """
    文本特征抽取:CountVecotrizer
    :return:
    """
    data = ["life is short,i like like python",
            "life is too long,i dislike python"]
    # 1、实例化一个转换器类
    transfer = CountVectorizer(stop_words=["is", "too"])

    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new.toarray())
    print("特征名字:\n", transfer.get_feature_names())

    return None


def count_chinese_demo():
    """
    中文文本特征抽取:CountVecotrizer
    :return:
    """
    data = ["我 爱 北京 天安门", "天安门 上 太阳 升"]
    # 1、实例化一个转换器类
    transfer = CountVectorizer()

    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new.toarray())
    print("特征名字:\n", transfer.get_feature_names())

    return None

结果

def cut_word(text):
    """
    进行中文分词:"我爱北京天安门" --> "我 爱 北京 天安门"
    :param text:
    :return:
    """
    return " ".join(list(jieba.cut(text)))


def count_chinese_demo2():
    """
    中文文本特征抽取,自动分词
    :return:
    """
    # 将中文文本进行分词
    data = ["一种还是一种今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
            "我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
            "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]

    data_new = []
    for sent in data:
        data_new.append(cut_word(sent))
    # print(data_new)
    # 1、实例化一个转换器类
    transfer = CountVectorizer(stop_words=["一种", "所以"])

    # 2、调用fit_transform
    data_final = transfer.fit_transform(data_new)
    print("data_new:\n", data_final.toarray())
    print("特征名字:\n", transfer.get_feature_names())

    return None

结果

方法2:TfidfVectorizer
TF-IDF - 重要程度
两个词 “经济”,“非常”
1000篇文章-语料库
100篇文章 - “非常”
10篇文章 - “经济”
两篇文章
文章A(100词) : 10次“经济” TF-IDF:0.2
tf:10/100 = 0.1
idf:lg 1000/10 = 2
文章B(100词) : 10次“非常” TF-IDF:0.1
tf:10/100 = 0.1
idf: log 10 1000/100 = 1
对数?
2 ^ 3 = 8
log 2 8 = 3
log 10 10 = 1
TF - 词频(term frequency,tf)
IDF - 逆向文档频率

from sklearn.feature_extraction.text import TfidfVectorizer
   def tfidf_demo():
    """
    用TF-IDF的方法进行文本特征抽取
    :return:
    """
    # 将中文文本进行分词
    data = ["一种还是一种今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
            "我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
            "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]

    data_new = []
    for sent in data:
        data_new.append(cut_word(sent))
    # print(data_new)
    # 1、实例化一个转换器类
    transfer = TfidfVectorizer(stop_words=["一种", "所以"])

    # 2、调用fit_transform
    data_final = transfer.fit_transform(data_new)
    print("data_new:\n", data_final.toarray())
    print("特征名字:\n", transfer.get_feature_names())

    return None

结果

4.特征预处理

4.4.1 什么是特征预处理

                为什么我们要进行归一化/标准化?
 					无量纲化

2.4.2 归一化

                异常值:最大值、最小值

公司

from sklearn.preprocessing import MinMaxScaler
def minmax_demo():
    """
    归一化
    :return:
    """
    # 1、获取数据
    data = pd.read_csv("dating.txt")
    data = data.iloc[:, :3]
    print("data:\n", data)

    # 2、实例化一个转换器类
    transfer = MinMaxScaler(feature_range=[2, 3])

    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)

    return None

结果

4.4.3 标准化

    (x - mean) / std
              标准差:集中程度
              应用场景:
              在已有样本足够多的情况下比较稳定,适合现代嘈杂大数据场景。
def stand_demo():
    """
    标准化
    :return:
    """
    # 1、获取数据
    data = pd.read_csv("dating.txt")
    data = data.iloc[:, :3]
    print("data:\n", data)

    # 2、实例化一个转换器类
    transfer = StandardScaler()

    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)
    return None
               

结果

5.特征降维

5.5.1 降维 - 降低维度

     ndarray
          维数:嵌套的层数
          0维 标量
          1维 向量
          2维 矩阵
          3维
          n维
      二维数组
          此处的降维:
          降低特征的个数
          效果:
          特征与特征之间不相关

5.5.1 降维

       特征选择
            Filter过滤式
                方差选择法:低方差特征过滤
                相关系数 - 特征与特征之间的相关程度
                    取值范围:–1≤ r ≤+1
                    皮尔逊相关系数
                    0.9942
                    特征与特征之间相关性很高:
                        1)选取其中一个
                        2)加权求和
                        3)主成分分析
            Embeded嵌入式
                决策树 第二天
                正则化 第三天
                深度学习 第五天

皮尔森

from sklearn.feature_selection import VarianceThreshold
from scipy.stats import pearsonr
def variance_demo():
    """
    过滤低方差特征
    :return:
    """
    # 1、获取数据
    data = pd.read_csv("factor_returns.csv")
    data = data.iloc[:, 1:-2]
    print("data:\n", data)

    # 2、实例化一个转换器类
    transfer = VarianceThreshold(threshold=10)

    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new, data_new.shape)

    # 计算某两个变量之间的相关系数
    r1 = pearsonr(data["pe_ratio"], data["pb_ratio"])
    print("相关系数:\n", r1)
    r2 = pearsonr(data['revenue'], data['total_expense'])
    print("revenue与total_expense之间的相关性:\n", r2)

    return None

结果

6.主成分分析

6.6.1 什么是主成分分析(PCA)

     sklearn.decomposition.PCA(n_components=None)
     n_components
         小数 表示保留百分之多少的信息
         整数 减少到多少特征
from sklearn.decomposition import PCA
def pca_demo():
    """
    PCA降维
    :return:
    """
    data = [[2, 8, 4, 5], [6, 3, 0, 8], [5, 4, 9, 1]]

    # 1、实例化一个转换器类
    transfer = PCA(n_components=0.95)

    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)
    return None

结果

6.6.2 案例:探究用户对物品类别的喜好细分

     用户          物品类别
     user_id         aisle
         1)需要将user_id和aisle放在同一个表中 - 合并
         2)找到user_id和aisle - 交叉表和透视表
         3)特征冗余过多 -> PCA降维
import pandas as pd
from sklearn.decomposition import PCA
# 获取数据
order_products = pd.read_csv("./instacart/order_products__prior.csv")
aisles = pd.read_csv("./instacart/aisles.csv")
orders = pd.read_csv("./instacart/orders.csv")
products = pd.read_csv("./instacart/products.csv")

# 合并aisles与products,按照aisle_id
tab1 = pd.merge(aisles, products, on=["aisle_id", "aisle_id"])
# 合并tab1与order_products,按照product_id
tab2 = pd.merge(tab1, order_products, on=["product_id", "product_id"])
# 合并tab2与orders,按照order_id
tab3 = pd.merge(tab2, orders, on=["order_id", "order_id"])

# 找到user_id 与 aisle关系--交叉表、透视表
table = pd.crosstab(tab3["user_id"], tab3["aisle"])
print(table.head(10))

# PCA 降维
transfer = PCA(n_components=0.95)
data_new = transfer.fit_transform(data)
print(data_new)

源代码:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.feature_selection import VarianceThreshold
from sklearn.decomposition import PCA
from scipy.stats import pearsonr
import jieba
import pandas as pd


def datasets_demo():
    """
    sklearn数据集使用
    :return:
    """
    # 获取数据集
    iris = load_iris()
    print("鸢尾花数据集:\n", iris)
    print("查看数据集描述:\n", iris["DESCR"])
    print("查看特征值的名字:\n", iris.feature_names)
    print("查看特征值:\n", iris.data, iris.data.shape)

    # 数据集划分
    x_train, x_test, y_train, y_test = train_test_split(
        iris.data, iris.target, test_size=0.2, random_state=22)
    print("训练集的特征值:\n", x_train, x_train.shape)

    return None


def dict_demo():
    """
    字典特征抽取
    :return:
    """
    data = [{'city': '北京', 'temperature': 100}, {'city': '上海',
                                                 'temperature': 60}, {'city': '深圳', 'temperature': 30}]
    # 1、实例化一个转换器类
    transfer = DictVectorizer(sparse=True)

    # 2、调用fit_transform()
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new.toarray(), type(data_new))
    print("特征名字:\n", transfer.get_feature_names())

    return None


def count_demo():
    """
    文本特征抽取:CountVecotrizer
    :return:
    """
    data = ["life is short,i like like python",
            "life is too long,i dislike python"]
    # 1、实例化一个转换器类
    transfer = CountVectorizer(stop_words=["is", "too"])

    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new.toarray())
    print("特征名字:\n", transfer.get_feature_names())

    return None


def count_chinese_demo():
    """
    中文文本特征抽取:CountVecotrizer
    :return:
    """
    data = ["我 爱 北京 天安门", "天安门 上 太阳 升"]
    # 1、实例化一个转换器类
    transfer = CountVectorizer()

    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new.toarray())
    print("特征名字:\n", transfer.get_feature_names())

    return None


def cut_word(text):
    """
    进行中文分词:"我爱北京天安门" --> "我 爱 北京 天安门"
    :param text:
    :return:
    """
    return " ".join(list(jieba.cut(text)))


def count_chinese_demo2():
    """
    中文文本特征抽取,自动分词
    :return:
    """
    # 将中文文本进行分词
    data = ["一种还是一种今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
            "我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
            "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]

    data_new = []
    for sent in data:
        data_new.append(cut_word(sent))
    # print(data_new)
    # 1、实例化一个转换器类
    transfer = CountVectorizer(stop_words=["一种", "所以"])

    # 2、调用fit_transform
    data_final = transfer.fit_transform(data_new)
    print("data_new:\n", data_final.toarray())
    print("特征名字:\n", transfer.get_feature_names())

    return None


def tfidf_demo():
    """
    用TF-IDF的方法进行文本特征抽取
    :return:
    """
    # 将中文文本进行分词
    data = ["一种还是一种今天很残酷,明天更残酷,后天很美好,但绝对大部分是死在明天晚上,所以每个人不要放弃今天。",
            "我们看到的从很远星系来的光是在几百万年之前发出的,这样当我们看到宇宙时,我们是在看它的过去。",
            "如果只用一种方式了解某样事物,你就不会真正了解它。了解事物真正含义的秘密取决于如何将其与我们所了解的事物相联系。"]

    data_new = []
    for sent in data:
        data_new.append(cut_word(sent))
    # print(data_new)
    # 1、实例化一个转换器类
    transfer = TfidfVectorizer(stop_words=["一种", "所以"])

    # 2、调用fit_transform
    data_final = transfer.fit_transform(data_new)
    print("data_new:\n", data_final.toarray())
    print("特征名字:\n", transfer.get_feature_names())

    return None


def minmax_demo():
    """
    归一化
    :return:
    """
    # 1、获取数据
    data = pd.read_csv("dating.txt")
    data = data.iloc[:, :3]
    print("data:\n", data)

    # 2、实例化一个转换器类
    transfer = MinMaxScaler(feature_range=[2, 3])

    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)

    return None


def stand_demo():
    """
    标准化
    :return:
    """
    # 1、获取数据
    data = pd.read_csv("dating.txt")
    data = data.iloc[:, :3]
    print("data:\n", data)

    # 2、实例化一个转换器类
    transfer = StandardScaler()

    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)
    return None


def variance_demo():
    """
    过滤低方差特征
    :return:
    """
    # 1、获取数据
    data = pd.read_csv("factor_returns.csv")
    data = data.iloc[:, 1:-2]
    print("data:\n", data)

    # 2、实例化一个转换器类
    transfer = VarianceThreshold(threshold=10)

    # 3、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new, data_new.shape)

    # 计算某两个变量之间的相关系数
    r1 = pearsonr(data["pe_ratio"], data["pb_ratio"])
    print("相关系数:\n", r1)
    r2 = pearsonr(data['revenue'], data['total_expense'])
    print("revenue与total_expense之间的相关性:\n", r2)

    return None


def pca_demo():
    """
    PCA降维
    :return:
    """
    data = [[2, 8, 4, 5], [6, 3, 0, 8], [5, 4, 9, 1]]

    # 1、实例化一个转换器类
    transfer = PCA(n_components=0.95)

    # 2、调用fit_transform
    data_new = transfer.fit_transform(data)
    print("data_new:\n", data_new)
    return None





if __name__ == "__main__":
    # 代码1:sklearn数据集使用
    # datasets_demo()
    # 代码2:字典特征抽取
    # dict_demo()
    # 代码3:文本特征抽取:CountVecotrizer
    # count_demo()
    # 代码4:中文文本特征抽取:CountVecotrizer
    # count_chinese_demo()
    # 代码5:中文文本特征抽取,自动分词
    # count_chinese_demo2()
    # 代码6:中文分词
    # print(cut_word("我爱北京天安门"))
    # 代码7:用TF-IDF的方法进行文本特征抽取
    # tfidf_demo()
    # 代码8:归一化
    # minmax_demo()
    # 代码9:标准化
    # stand_demo()
    # 代码10:低方差特征过滤
    # variance_demo()
    # 代码11:PCA降维
    pca_demo()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值