通信系统原理[郭宇春]——信号与噪声——课后习题答案

2-4 利用解析法求f1(t)和f2(t)的卷积,画出g(t)图像

        g(t)=f_{1}(t)\ast f_{2}(t)=\int^{+\infty }_{-\infty}f_{1}(t)f_{2}(t-\tau )d\tau,先将f_{2}(t)翻转得到。

(1)当t≤1时,-3+t≤-2,因此g(t) = 0。

(2)当t>1且t<4时,g(t) = (t-1)AB。

(3)当4<t<5时,g(t) = 3AB。

(4)当5≤t≤8时,g(t) = (8-t)AB。

(5)当t>8时,g(t)为0。

综上所述,g(t)图像如图所示。

 2-5 已知f1、f2,求f1(t)和f2(t)的

(1)各自自相关、能量谱、能量

法1:图像法

        Rf_{1}(\tau ) = \int ^{+\infty }_{-\infty}f(t)f(t+\tau)d\tau

        Rf_{1}(\tau ) =\left\{\begin{matrix} 4(4-t) & 0\leqslant t\leqslant4\\ 4(4+t) & -4\leqslant t\leqslant0 \end{matrix}\right.

        \therefore Rf_{1}(\tau)=16tri(\frac{\tau}{4})

法2:定义法

        f_{1}(t)=2P_{4}(t-1)

        F_{1}(\omega )=8Sa(2\omega)e^{-j\omega t}

        \left | F(\omega)^{2} \right |=64Sa^{2}(2\omega)

        \therefore Rf_{1}(\tau)=16tri(\frac{\tau}{4})

同理可以得出

        Rf_{2}(\tau)=16tri(\frac{\tau}{4})=Rf_{1}(\tau)

        E_{f_{1}}(\omega)=F\begin{Bmatrix} 16tri(\frac{\tau}{4}) \end{Bmatrix}=64Sa^{2}(2\omega)

        E_{f_{2}}(\omega)=64Sa^{2}(2\omega)

        E_{1}=R_{f_{1}}(0)=16E_{2}=R_{f_{2}}(\omega)=16

(2)求互相关

        R_{12}(\tau)=\int_{-\infty }^{+\infty}f_{1}(t)f_{2}(t+\tau)dt=\int_{-\infty }^{+\infty}f_{2}(t+1)f_{2}(t+\tau)dt=R_{f_{2}}(\tau+1)

2-10 随机过程X(t),R_{x}(\tau)=1+e^{-\left | \tau \right |}

(1)求m_{x},\delta _{x}^{2},P_{x},C_{x}(\tau),\rho _{x}(\tau).

        \because m_{x}^{2}=R_{x}(\infty)=1\therefore m_{x}=1

        \because R_{x}(0)=E\begin{bmatrix} X^{2} \end{bmatrix}=\delta^{2}+m_{x}^{2}=2 \therefore\delta^{2}_{x}=1

        P_{x}=R_{x}(0)=2,C_{x}(\tau)=R_{x}(\tau)-m_{x}^{2}=e^{-\left | \tau \right |}

        \rho_{x}(\tau)=\frac{C_{x}(\tau)}{\delta^{2}_{x}}=e^{-\left | \tau \right |}

(2)Y=2X+1,求m_{Y},\delta_{Y}^{2},P_{Y},C_{Y}(\tau),\rho_{Y}(\tau),R_{XY}(\tau),C_{XY}(\tau),\rho_{XY}(\tau).

        \because m_{Y}=E\left[2X+1 \right ]=3,E\left[Y^{2} \right ]=E\left[4X^{2}+4X+1 \right ]=\delta_{Y}^{2}+m_{Y}^{2}=13

        \therefore \delta^{2}_{Y}=13-9=4,P_{Y}=E\left[Y^{2} \right ]=13

        R_{Y}(\tau)=E \left[ Y(t) Y(t+ \tau ) \right ]=E\left[(2X(t)+1)(2X(t+\tau)+1) \right ]

                    =E \left[ 4X(t+\tau)X(t) +2X(t)+2X(t+\tau)+1\right ]

                    =4R_{x}(\tau)+4+1=9+4e^{-\left|\tau \right |}

        C_{Y}(\tau)=R_{Y}(\tau)-m_{Y}^{2}=4e^{-\left |\tau \right|}

        \rho_{Y}(\tau)=\frac{C_{Y}(\tau)}{\delta_{Y}^{2}}=e^{-\left | \tau \right |}

        R_{XY}(\tau)=E\left[X(t)Y(t+\tau) \right ]=E\left[X(t)(2X(t+\tau)+1) \right ]

                      =2R_{x}(\tau)+m_{x}=3+2e^{-\left | \tau \right |}

        C_{XY}(\tau)=R_{XY}(\tau)-m_{X}m_{Y}=2e^{-\left | \tau \right |}

        \rho_{XY}(\tau)=\frac{C_{XY}(\tau)}{\delta_{x}\delta_{Y}}=e^{-\left | \tau \right |}

2-12

(1)X、Y统计独立,p(x,y)=p(x)p(y),X,Y是否相关?

        R_{XY}=E\left[XY \right ]=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xyp(x,y)dxdy

                                    =\int_{-\infty}^{+\infty}xp(x)dx\int_{-\infty}^{+\infty}yp(y)dy=m_{X}m_{Y}

        可以判断不相关。

(2)Y=X^{2},X在(-1,1)均匀分布,证明X、Y是否相关?

        R_{XY}=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xyp(x,y)dxdy=\int_{-1}^{+1}x^{3}p(x)dx=0=m_{X}m_{Y}

        可以判断不相关。

(3)给出高斯分布X、Y的\rho(x,y),给出\rho=0时的结果。

        p(x,y)=\frac{1}{\sqrt{2\pi}\delta_{x}}e^{-\frac{(x-m_{x})^{2}}{2\delta_{X}^{2}}}\frac{1}{\sqrt{2\pi}\delta_{Y}}e^{-\frac{(y-m_{Y})^{2}}{2\delta_{Y}^{2}}}=p(x)p(y)

        \rho=0代表X、Y不相关,p(x,y)=p(x)p(y)代表X、Y独立

        即证明高斯分布下不相关与独立等价。

(4)高斯分布X、Y服从N\left[m_{x},\delta^{2}_{x} \right ],N\left[m_{y},\delta^{2}_{y} \right ],计算z=ax+by的均值、方差。

        E\left[Z\right ]=E\left[aX+bY \right ]=am_{X}+bm_{Y}

        E\left[Z^{2} \right ]=E\left[(aX+bY)^{2} \right ]=E\left[a^{2}X^{2}+2abXY+b^{2}Y^{2} \right ]

                     =a^{2}E\left[X^{2} \right ]+2abE\left[XY \right ]+b^{2}E\left[Y^{2} \right ]

                     =a^2(m_x^2+\delta_x^2)+2ab(\rho_{XY}\delta_x \delta_y+m_x m_y)+b^2(m_x^2+\delta_x^2)

        \delta_z^2=E\left[ Z^2 \right ]-E\left[Z \right ]^2=a^2\delta_x^2+2ab\rho_{xy}\delta_x\delta_y+b^2\delta_Y^2

        即高斯分布的线性组合仍为高斯分布。

2-15 随机过程X(t)=\xi cos(\omega_0t+\theta)\xi为均值0,方差\delta^2高斯变量。θ是(-\pi,\pi)广义平稳,\xi与θ统计独立。

(1)试证X(t)广义平稳。

        E\left[X(t) \right ]=E\left[\xi cos(\omega_0t+\theta) \right ]=E\left[ \xi\right ]E\left[cos(\omega_0t+\theta) \right ]=0

        R_x(t_1,t_2)=E\left[\xi cos(\omega_0 t+\theta) \xi cos(\omega_0(t+\tau)+\theta)\right ]

                         =E\left[\xi^2 \right ]E\left[cos(\omega_0 t+\theta)cos(\omega_0(t+\tau)+\theta) \right ]

                         =\frac{\delta^2}{2}E\left[cos\omega_0\tau+cos(2\omega_0t+\omega_0\tau+2\theta) \right ]

                        =\frac{\delta^2}{2}cos(\omega_0\tau)

        综上,均值与时间无关,相关函数只与时间差有关,广义平稳得证。

(2)X(t)是否遍历平稳?

        cos函数在一个周期内积分为0。

        \therefore m_x=\lim_{T\rightarrow \infty}\int_{-\frac{T}{2}}^\frac{T}{2}X(t)dt=0

        R_x(\tau)=\int_{-\frac{T}{2}}^{\frac{T}{2}}\xi^2cos(\omega_0t+\theta)cos(\omega_0(t+\tau)+\theta)dt

                   =\frac{\xi^2}{2}cos\omega_0\tau+\frac{\xi^2}{2}\int_{-\frac{T}{2}}^{\frac{T}{2}}cos(2\omega_0t+\omega_0\tau+2\theta)dt

                   =\frac{\xi^2}{2}cos\omega_0\tau

        可见X(t)非遍历平稳。

(3)

        S_x(\omega)=F\left[ R_x(\tau)\right]=\frac{\pi\delta^2}{2}\left[\delta(\omega+\omega_0)+\delta(\omega-\omega_0) \right ]

        P_x=R_x(0)=\frac{\delta^2}{2}

2-16 设有两个随机过程,\omega_0为常数

        \left\{\begin{matrix} X(t)=Acos\omega_0 t+Bsin\omega_0 t\\ Y(t)=Bcos\omega_0 t+Asin\omega_0 t \end{matrix}\right.

        A、B不相关,m=0,方差为\delta^2。X(t),Y(t)广义平稳。

(1)求互相关函数R_{XY}(t,t+\tau)

        R_{XY}(t,t+\tau)=E\left[X(t)Y(t+\tau) \right ]

                                =E\left[(Acos\omega_0 t+Bsin\omega_0 t)(Bcos\omega_0(t+\tau)+Asin\omega_0 (t+\tau)) \right ]

                                =E\left[ABcos(\omega_0 t)cos(\omega_0(t+\tau)) \right ]+E\left[A^2cos\omega_0 t sin \omega(t+\tau) \right ]

                                    +E\left[B^2sin\omega_0t+cos\omega_0(t+\tau) \right ]+E\left[ABsin\omega_0t+sin\omega_0(t+\tau) \right ]

        R_{AB}-m_Am_B=C_{AB},\because C_{AB}=0,\therefore R_{AB}=0

        E(AB)=0,E(A^2)=E(B^2)=\delta^2

        则原式可化简为:

        \delta^2\left[cos\omega_0tsin\omega_0(t+\tau)+sin\omega_0tcos\omega_0(t+\tau) \right ]=\delta^2sin\omega_0(2t+\tau)

(2)是否联合平稳?

        由于RXY不仅仅与τ有关,故不联合广义平稳。

(3)

        Z(t)=X(t)+Y(t)

        R_Z(t,t+\tau)=E\left[(X(t)+Y(t))(X(t+\tau)Y(t+\tau)) \right ]

                             =R_x(t,t+\tau)+R_{XY}(t,t+\tau)+R_{YX}(t,t+\tau)+R_Y(t,t+\tau)

                             =2\delta^2\left[cos\omega_0\tau+sin(2\omega_0t+\omega_0\tau) \right ]

        可见RZ与t有关,故Z(t)并不平稳。

2-18 均值为0,R_X(\tau)=e^{-\left | \tau \right |}通过Y=A+BX的线性网络。试求:

(1)输入噪声的一维概率密度函数

        N\sim (m_x,\delta_x^2),m_x=0,\rho_x=\overline{X^2}=R_X(0)=1,\therefore \delta_x^2=1

        \therefore N\sim(0,1)

        p_x(x,t)=\frac{1}{\sqrt{2\pi}}e^{-\frac{-x^2}{2}}

(2)高斯过程的线性组合仍为高斯型

        \therefore p_Y(y,t)=\frac{1}{\sqrt{2\pi\delta_Y}}e^{-\frac{-(y-m_y)^2}{2\delta_y^2}}=\frac{1}{\sqrt{2\pi B}}e^{-\frac{-(y-A)^2}{2B^2}}

(3)P_Y=R_Y(0)=E\left[Y^2 \right ]=A^2+B^2

(4)\tau=0.5时,求ρ

        R_Y(\tau)=E\left[Y(t),Y(t+\tau) \right ]=E\left[(BX(t)+A) (BX(t+\tau)+A)\right ]

                    =E\left[A^2 \right ]+E\left[B^2X(t)X(t+\tau) \right ]+E\left[AB(X(t)+X(t+\tau)) \right ]

                    =A^2+B^2R_X(\tau)

        C_Y(\tau)=R_Y(\tau)-m_Y^2

        \rho_Y(\tau)=\frac{R_Y(\tau)}{\delta_Y^2}-\frac{m_y^2}{\delta_Y^2}=\frac{A^2+B^2R_X(\tau)-A^2}{B^2}=R_x(\tau)

        \rho_Y(0.5)=e^{-0.5}\approx 0.61

2-19 AWGN为n(t),f_0=1MHz,W=10kHz,n_0=2\times10^{-10}W/Hz,B=5kHz。整体系统如图所示。

(1)画出标出四点的功率谱图像。

        1)S_n(f)=\frac{n_0}{2}的理想功率谱。

        2)经过了带通滤波器,为:

S_n_2(f)=\frac{n_0}{2}\left[rect(\frac{f+f_0}{W})+[rect(\frac{f-f_0}{W}) \right ]

        3)边部功率谱变为原来的四分之一,为:

n(t)cos\omega_0t=\frac{1}{4}\left[S_n(f+f_0)+S_n(f-f_0) \right ]

        4)经过了低通滤波器,为一个B=5kHz的谱。

(2)P_{2n}=n_0W=2uW

         P_{4n}=\frac{1}{4}E\left[n^2(t) \right ]=0.5uW

补充1 随机过程X(t)=Acos(\omega_0t+\theta),其中A和\omega为常数。

(1)当\theta 在  \left[0,\pi \right ]  均匀分布,则X(t)是否平稳?

        由所给信息可得:

        p(\theta)=\left\{\begin{matrix} \frac{1}{\pi}&0<\theta<\pi\\ 0 & else \end{matrix}\right.

        证明平稳,即E[X]与t无关,Rx仅与τ有关。

        E\left[X(t) \right ]=E\left[Acos(\omega_0t+\theta) \right ]=E\left[ A(cos\omega_0t cos\theta-sin\omega_0tsin\theta)\right]

                       =E\left[A \right ]E\left[cos\omega_0t \right ]E\left[cos\theta \right ]-E\left[A \right ]E\left[sin\omega_0t \right ]E\left[sin\theta \right ]

                       =Acos\omega_0tE\left[cos\theta \right ]-Asin\omega_0tE\left[sin\theta \right ]

                       =Acos\omega_0t\times0-\frac{2}{\pi}Asin\omega_0t=-\frac{2}{\pi}Asin\omega_0t

        可见其与t有关,故不具有平稳性。

(2)当\theta0,\frac{\pi}{2} 等概出现,问X(t)是否具有平稳性?

        E\left[X(t) \right ]=Acos\omega_0tE\left[ cos\theta\right]-Asin\omega_0tE\left[sin\theta \right ]

                       =\frac{1}{2}Acos\omega_0t-\frac{1}{2}Asin\omega_0t

        与t有关,因此X(t)不平稳。

  • 15
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hamooddd

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值