第四章 不定积分

基本概念

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

不定积分基本公式与积分法

基本公式

在这里插入图片描述
推导待定

积分法

换元积分法

第一类换元积分法(凑微分法)

在这里插入图片描述
观察上面三个例子可得

  • 把dx换成d其他东西,是为了能够在d之后出来一个前面式子的东西
  • 然后把前面式子给简化掉,变成可以用基本公式的样子

在这里插入图片描述
这题怎么说呢,以为是会了,但是做的时候还是有差距,就是你还是得一步一步来,尽量把你的式子的尽量多的东西换成你要代换的东西

在这里插入图片描述

  • 你大可以把式子拆成两个,然后两边根据情况用d后面放不同的东西
第二类换元积分法

**原理:**是让x变成一个t的表达式,和第一类刚好相反(把x的一个表达式换成t)

使用情形:
1.将被积函数从无理函数转化为有理函数
但是遇到无理函数不一定就一定要用第二类换元积分法
例如
在这里插入图片描述
这两个变换稍微挖空一下吧

在这里插入图片描述
在最后那一个结论的第二个项挖个空吧

在这里插入图片描述

  • 这是第二类积分法的应用,把必须解决的无理的东西换成有理的。就是把x换成一个t的表达式让它有理
  • 然后注意一下那个t/1+t积分的拆分方法

2.当被积函数含平方和或者平方差的时候用三角代换

在这里插入图片描述
sin是对边和斜边的比值
tan是对边和邻边的比值
sec是斜边和邻边的比值
csc是斜边和对边的比值(刚好是1/sin)
sec是斜边和邻边的比值(刚好是1/cos)

然后你看表达式的样子

  • 如果是平方差,x2 是被减数,那么代表a是斜边了,用t表示x是asint
  • 如果是平方差,但是x2是减数,那么代表x是斜边了,用t表示x是asect
  • 如果是平方和,那么就代表这两条边是除了斜边的两条边,用t表示x是atant

在这里插入图片描述

最后可以画一个三角形来把t变回x

在这里插入图片描述

分部积分法

在这里插入图片描述
分部积分方法

六种情况是需要使用分部积分法的

1.幂函数 * 指数函数
在这里插入图片描述

然后还是幂函数乘指数函数的样子,再次分部积分
2.幂函数 * 对数函数

在这里插入图片描述
3.幂函数 * 三角函数

在这里插入图片描述
在这里插入图片描述
问题就在于这里是sin cos 必须是一次,遇到二次的话你就需要用到半角公式往下降
这里插播一下半角公式:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这里如果是tan cot sec csc 必须是2次或者4次,和上面的sin cos 必须是1次联系起来
4.幂函数 * 反三角函数
在这里插入图片描述
这是很好的题目

在这里插入图片描述

  • 这里可以看到它其实已经给你分部好了,幂函数弄到后面了,你就可以直接进行分部积分法了

5.指数函数 * 三角函数

在这里插入图片描述
这种题目和前面四种不一样,不能看到题目就做,这种题目是一个循环
在这里插入图片描述
这种题呢,就是需要你先设一个I,然后循环直到找到出口

6.被积函数为secnx或cscnx(n为奇数)
插播:sec2=1+tan2
如果是偶数次的话就这样做

在这里插入图片描述
这两种情形都算是偶次的,都好做

在这里插入图片描述
在这里插入图片描述
但是如果是奇数次的话就得设一个 I 来做了

两类重要函数的不定积分——有理函数与三角有理函数

有理函数

在这里插入图片描述
有理函数的概念和积分方法

在这里插入图片描述
遇到假分式的时候需要用到多项式除法

在这里插入图片描述
真分式情况的三种拆分成部分和的方式(第2种方式存疑,有不清楚的地方)

关于第三种,这就是固定解法,如果分母是二次,那你的分子形式就是这样从一次到常数

在这里插入图片描述

  • 这一种就是把上面的两个结合起来而已
    在这里插入图片描述
    两个简单例题
    在这里插入图片描述
    一个题目

在这里插入图片描述
需要重新巩固一下你的不定积分公式

在这里插入图片描述
这个公式还是需要记牢的

在这里插入图片描述
一道好题

在这里插入图片描述
这个地方,那个拆,还是看不大懂

在这里插入图片描述
对于这里的两道题目,除了稍微带点背,我想不出你有啥方法可以想出来

无理函数不定积分

无需转化为有理函数

在这里插入图片描述
妙,说实话确实是妙
在这里插入图片描述
稍微带点背吧,不然没有感觉

在这里插入图片描述
这个是无理必须要代换的例子

在这里插入图片描述
在这里你代换之后,出现了一个假分式的情况,那就是你按照假分式方式去做,按规矩来。

三角有理函数的不定积分

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 3
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 这是一个常见的积分,可以用分部积分法解决。 令u = sin(x),dv = 1/x² dx,则du/dx = cos(x),v = -1/x。 根据分部积分公式,积分结果为: ∫ sin(x)/x² dx = -sin(x)/x + ∫ cos(x)/x dx 再用一次分部积分法解决∫ cos(x)/x dx: 令u = cos(x),dv = 1/x dx,则du/dx = -sin(x),v = ln|x|。 根据分部积分公式,积分结果为: ∫ cos(x)/x dx = ln|x|cos(x) + ∫ sin(x)/x² dx 将该式代入前面的积分结果,得到: ∫ sin(x)/x² dx = -sin(x)/x + ln|x|cos(x) + C 其中C为常数。 ### 回答2: 要求解积分∫(sinx/x²)dx,我们可以使用分部积分法。 首先,我们选取分部积分的式子,将∫(sinx/x²)dx写为∫(1/x²)(sinx)dx。然后,我们令u = 1/x² 和 dv = sinx dx。 对u = 1/x²求导得到du = (-2/x³)dx,对dv = sinx dx积分得到v = -cosx。 然后,根据分部积分公式∫u dv = uv - ∫v du,我们可以得到: ∫(1/x²)(sinx)dx = -cosx/x² + 2∫(cosx/x³)dx。 现在,我们需要解决∫(cosx/x³)dx 这个新的积分。我们可以使用再次利用分部积分法: 令u = cosx 和 dv = (1/x³)dx。 对u = cosx求导得到du = -sinx dx,对dv = (1/x³)dx积分得到v = -1/(2x²)。 根据分部积分公式∫u dv = uv - ∫v du,我们可以得到: ∫(cosx/x³)dx = -1/(2x²) cosx + 1/2 ∫(sinx/x²)dx。 现在,我们需要解决∫(sinx/x²)dx 这个新的积分。刚才的过程中我们已经把它写作了新的积分,所以我们可以继续使用分部积分法。 以相同的方式,令u = sinx 和 dv = (1/x²)dx。 对u = sinx求导得到du = cosx dx,对dv = (1/x²)dx积分得到v = -1/x。 根据分部积分公式∫u dv = uv - ∫v du,我们可以得到: ∫(sinx/x²)dx = -sinx/x - ∫(-cosx/x)dx = -sinx/x + ∫(cosx/x)dx。 现在,我们需要解决新的积分∫(cosx/x)dx。我们可以使用一种名为级数展开法来解决它。 将(cosx/x)展开为无限级数,我们可以得到: (cosx/x) = 1 - (x²/2!) + (x⁴/4!) - (x⁶/6!) + ... 现在,我们可以对该级数展开式逐项进行积分,并且每一项的积分可以直接计算。最终,我们可以得到该级数的积分: ∫(cosx/x)dx = ∫(1 - (x²/2!) + (x⁴/4!) - (x⁶/6!) + ...)dx = ln|x| + C。 将这个结果代回之前的等式中,我们可以得到最终的积分∫(sinx/x²)dx的解答: ∫(sinx/x²)dx = -sinx/x + ln|x| + C。 其中,C是常数。 ### 回答3: 要求$f(x)=\frac{\sin x}{x^2}$的积分。 我们可以通过应用分部积分公式来计算该积分。分部积分公式的一般形式是: $$\int u \, dv = u \, v - \int v \, du$$ 首先,我们需要选择一个函数作为$u$和另一个函数作为$dv$。让我们选择$u=\frac{1}{x^2}$和$dv=\sin x \, dx$。 首先计算$du$和$v$。对$u$求导,得到$du=-\frac{2}{x^3} \, dx$。对$dv$积分,得到$v=-\cos x$。 现在我们可以应用分部积分公式: $$\int \frac{\sin x}{x^2} \, dx = \frac{1}{x^2}(-\cos x) - \int (-\cos x) \left(-\frac{2}{x^3}\right) \, dx$$ $$= -\frac{\cos x}{x^2} + 2 \int \frac{\cos x}{x^3} \, dx$$ 现在我们再次使用分部积分公式,选择$u=\frac{1}{x^3}$和$dv=\cos x \, dx$。计算$du$和$v$得到$du=-\frac{3}{x^4} \, dx$和$v=\sin x$。 将结果代入上面的等式中: $$\int \frac{\sin x}{x^2} \, dx = -\frac{\cos x}{x^2} + 2 \left(\frac{1}{x^3} \sin x - \int \frac{\sin x}{x^4} \, dx\right)$$ 我们可以继续重复这个过程,直到达到所需的准确度。然而,由于此处的演算变得冗长,我将节略。请注意,这是一个无穷级数的总和,并且可能没有一个简洁的解析表达式。 因此,$f(x)=\frac{\sin x}{x^2}$的积分可以表示为: $$\int \frac{\sin x}{x^2} \, dx = -\frac{\cos x}{x^2} + 2 \left(\frac{1}{x^3} \sin x - \frac{2}{x^4}\cos x + \frac{6}{x^5}\sin x - \dots \right)$$

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值