方程组
行图像
阶数为三的话,一个方程的解是一个平面上,
然后三个方程的解是三个平面
这三个平面交与一点,这个点就是你方程组的解
矩阵形式:
列图像
向量形式
就是你把每一个列都看作一个向量,最后结果也是一个向量,那你的x,y,z。就是说你应该把这几个列进行怎样的线性组合能够得到最后结果的那个向量
是否右边的b是任何的向量,都有解?
不是的,想象一下,假如你左边的向量都出于一个平面上,那么你右边的那个b不在这个平面上,那就不可能得到解了
线性相关
你有一组向量,至少有一个是多余的,对当前空间的拓展没有贡献,这时说他们是线性相关的(因为至少有一个向量可以用其他向量表示)
线性无关
如果所有的向量都对当前空间有帮助,那么就说明是线性无关的
线性变换
1.直线依旧是直线2.原点保持固定
矩阵
矩阵乘积
代表线性变换的复合
矩阵里面包含了意思
存储了坐标系变换的信息
矩阵的秩
极大线性无关组。就说说有用的有几个就完事了。
判断定向有没有被改变
右手食指指向i帽的方向,中指指向j帽的方向,之后大拇指就是k帽的方向。
如果变之后你仍然可以这样表示,那么就说明定向没变,如果之后你智能用左手这样,那么说明定向变了
两个矩阵相乘,他们乘积的行列式
就等于这两个矩阵的行列式的乘积
行列式
行列式和他的转置行列式完全一样
就说明了行列式的行和列完全一样
行列式的值
代表这个面积变为原来的几倍
如果说这个行列式的值是0,那么就代表压缩到了更小的维度上
行列式的值为负数。空间定向被改变,代表这张纸被翻转了
行列式的计算本质
两行三列行列式代表什么
三列代表原本是有三个基构成的
两行代表之后是用二维来表示的
特征向量和特征值
那些特殊的(坐标系转换之后还在原本的线上的)线上的向量还有和原来的向量数值上的差别
这样你就可以把某个旋转看做是绕某个轴了,这样比你去考虑你一个三乘三的矩阵直观得多
如果是旋转的话,那么特征值为1,因为没有改变大小哦
如果每一个向量都发生了旋转并离开了它张成的空间,那么久没有特征向量了
为什么行列式的值为0代表没有逆?
因为行列式的值为0代表维数变小了,比如三维变二维,变成一条线了,你的信息被损坏了,不能再还回去了
秩
秩代表变换后空间的维数
相似矩阵
矩阵乘积仍然代表同一个变换的,但是是在别人的视角看的
所谓视角
其实就是基底,就你的基底是哪两个不同的东西?
你不同的人使用的两个基是不一样的,这就是所谓不同的视角