第一节 微分方程的基本概念
听了汤讲的稍微理解一下就行了,日后不断anki熟悉吧
第二节 一阶微分方程的种类及解法
一.可分离变量的微分方程
定义
解法
小例题,同时也注意一下那个tan的变化
这里就是需要注意一下你的定义域,你讨论的时候需要在意的,你像分母这种东西不能为0要注意的,但是他说以后直接除??不用讨论,不懂,这里先放掉
二.齐次微分方程
定义
- 令
- 变量分离
- 积分
那个不+C加lnC的技巧
好题
三.一阶齐次线性微分方程
P(x)可以是常数也可以是x的表达式
解法:需要同时记住推导和结论
这题用一阶齐次线性微分方程做
代公式,很方便
四.一阶非齐线性微分方程
通解公式
推导过程:常数变易法,推导过程的一部分,看看就好
可以,好题
只能说巧得不能再巧了,就是你不定积分的公式要弄熟练就好做了
第三节 可降阶的高阶微分方程
除了1阶,其他全部都算高阶
1.形如y(n) = f(x)的方程
你告诉我,这种可降解的高阶他不无聊嘛,没用的——汤家凤
2.形如f(x,y’,y’') = 0的方程(缺y型)
就这么简单,吼,就这么简单~——汤家凤
3.形如f(y,y’,y’') = 0的方程(缺x型)
化为的式子的原因
解法
好题,内容挺多的,需要对前面的公式很熟练
第四节 高阶线性微分方程
一.高阶线性微分方程的基本概念
1.n阶齐次线性微分方程
2.n阶非齐次线性微分方程
二.高阶线性微分方程解的结构与性质
三.高阶常系数线性微分方程
1.二阶常系数齐次线性微分方程的解法
好了,就这么简单
1.二阶常系数非齐次线性微分方程的特解
第一步
第二步
好做得一塌糊涂啊
小技巧,那个地方求二阶导数