第七章 微分方程

本文详细介绍了微分方程的基本概念,包括一阶微分方程的解法,如可分离变量、齐次和非齐次类型,并探讨了可降阶的高阶微分方程。此外,还深入讲解了高阶线性微分方程的解的结构和性质,特别是常系数线性微分方程的解法。内容覆盖了解题技巧和实例分析,适合学习巩固微分方程知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一节 微分方程的基本概念

在这里插入图片描述

听了汤讲的稍微理解一下就行了,日后不断anki熟悉吧

第二节 一阶微分方程的种类及解法

一.可分离变量的微分方程

在这里插入图片描述
定义
在这里插入图片描述
解法

在这里插入图片描述

小例题,同时也注意一下那个tan的变化

在这里插入图片描述
这里就是需要注意一下你的定义域,你讨论的时候需要在意的,你像分母这种东西不能为0要注意的,但是他说以后直接除??不用讨论,不懂,这里先放掉

二.齐次微分方程

在这里插入图片描述
定义
在这里插入图片描述

  • 变量分离
  • 积分在这里插入图片描述

那个不+C加lnC的技巧
在这里插入图片描述

好题

三.一阶齐次线性微分方程

在这里插入图片描述
P(x)可以是常数也可以是x的表达式

在这里插入图片描述
解法:需要同时记住推导和结论
在这里插入图片描述
这题用一阶齐次线性微分方程做
在这里插入图片描述

代公式,很方便
在这里插入图片描述

四.一阶非齐线性微分方程

一阶
在这里插入图片描述
通解公式

在这里插入图片描述
推导过程:常数变易法,推导过程的一部分,看看就好

在这里插入图片描述
可以,好题
在这里插入图片描述
只能说巧得不能再巧了,就是你不定积分的公式要弄熟练就好做了

第三节 可降阶的高阶微分方程

除了1阶,其他全部都算高阶

1.形如y(n) = f(x)的方程

在这里插入图片描述
在这里插入图片描述

你告诉我,这种可降解的高阶他不无聊嘛,没用的——汤家凤

2.形如f(x,y’,y’') = 0的方程(缺y型)

在这里插入图片描述

就这么简单,吼,就这么简单~——汤家凤
在这里插入图片描述

3.形如f(y,y’,y’') = 0的方程(缺x型)

在这里插入图片描述
化为的式子的原因
在这里插入图片描述
解法

在这里插入图片描述
好题,内容挺多的,需要对前面的公式很熟练

第四节 高阶线性微分方程

一.高阶线性微分方程的基本概念

1.n阶齐次线性微分方程

在这里插入图片描述

2.n阶非齐次线性微分方程

在这里插入图片描述

二.高阶线性微分方程解的结构与性质

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三.高阶常系数线性微分方程

1.二阶常系数齐次线性微分方程的解法

在这里插入图片描述

在这里插入图片描述
好了,就这么简单
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

1.二阶常系数非齐次线性微分方程的特解

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
第一步
在这里插入图片描述
第二步
在这里插入图片描述
在这里插入图片描述
好做得一塌糊涂啊
在这里插入图片描述
在这里插入图片描述
小技巧,那个地方求二阶导数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值