线性代数本质的随记

矩阵是个什么东西?

矩阵就是对应空间中的一种线性变化(这种线性变化怎么衡量呢)?
比如在二维空间
p = [ a b c d ] p= \begin{bmatrix} a & b \\ c& d \\ \end{bmatrix} p=[acbd]
就相当于是i帽(1,0),j帽(0,1)分别变到(a,c)和(b,d)所引起的空间变化。

  • 乘了一个矩阵,也可以看成是转换了一个新的基底下对应的原基底的坐标。

我自己对矩阵的理解(下面都是我自己的感觉,大家可看可不看):就是其实矩阵就是相当于把空间分成很多个很多个小格,然后这些网格的移动就是矩阵,而上面的向量也在他的作用下有一个新的对应于原基底的坐标

有了上面的观点,我们其实就可以来理解相似对角化了。

  1. 先来讲一下两个矩阵相似的几何意义。
    eg.P-1AP = B, 则A和B相似,怎么理解呢,其实相似矩阵是同一个线性变换在不同基底下的表示。
    比如说我们用人来举例子,我们假设P还是上文那个。小红有她自己的基底(a,c),(b,d),而我的基底就是原基底(1,0),(0,1)。前面有说过矩阵是一种线性变化,也就是会对向量产生作用。我们假设小红想去让v(2,2)旋转90°,这个(2,2)是小红的语言(基底)下,然后我们先左乘一个P,就是将小红的语言转化成我们的语言,然后A是我们希望对v产生的作用(也就是旋转90°),我们就左乘一个旋转矩阵
    [ 0 − 1 1 0 ] \begin{bmatrix} 0 & -1 \\ 1& 0 \\ \end{bmatrix} [0110],注意现在是我们的语言下对v操作,可以让v旋转90度,然后再左乘p-1,就是把我们的语言又换回小红的语言,也就是说B=P-1AP----->就是把我的语言下的操作(原基底下对空间的影响)A转换为其他人语言下(以p中列向量为基底)的操作,也就是我想让v进行一个操作,我应该乘A,而别人应该乘B,A和B就是不同基底下对应的相同的操作(对空间的影响完全相同)

  2. 然后我们来讲相似对角化,其实相似对角化的过程就可以把一个复杂的线性变换拆解乘多个收缩变化的复合。相似对角化公式如下: P − 1 A P = Λ P^{-1}AP = \Lambda P1AP=Λ,根据前面的铺垫,我们可以知道 Λ \Lambda Λ其实是P的列形成的基底下想要进行的操作,也就是我们的语言下操作A。学过相似对角化的都知道,如果一个矩阵可以相似对角化,那么P中的列向量其实就是它的特征向量,而对角矩阵就是特征值。好像是不是有点串起来了?怎么解释呢?

在P基底,也就是A操作转化为以特征向量为基底下的操作就是B。其实很好理解,因为我们说A操作对特征向量的影响就只有收缩变换,那么如果以特征向量作为基底,那么它能感受到的就是伸缩变化(也就是对角矩阵)

  1. 那么实对称矩阵的相似对角化也很好理解,就是我们对原坐标系的作用相当于对以一组正交的单位向量为基底的新的坐标系进行伸缩变换

注意,我的表述可能会有点乱,有时候说空间,有时候说网格,有时候说坐标系,其实都表达同一个意思,反正都是我们yy出来的一个概念,我觉得理解成一个无限细分的网格纸上面的坐标系会比较好,这个网格会根据我们所选基底的不同而重新构建(保证每一行每一列平行且等距(线性变换))

  1. 二次型转化为标准型的理解:
    我昨天其实找了很多知乎的答案,也看了很多篇文章,其实都还挺乱的,然后慢慢得悟出来了一点,如果有什么不对的,大家都可以评论区告诉我,共勉。我们在二次型转换成标准型的时候进行了操作x = py,这就是我最大的疑问所在,这操作是在干嘛。

我说说我的理解,下面都针对Q(X,Y)=x12+x22+x1x2.有学过正交变换法的都知道,p中的列向量其实都是相互正交的单位向量(这里我们先假装不知道),结合我们上面学的,x=py,x就是我们语言下的一个向量(坐标)(其实遍历x就是所有的(x1,x2)构成的一个图形),而y就是在以p的列向量为基底下的向量(坐标)。原二次型是可以转化为XTAX的,然后这时候我们把x=py放进去,然后我们希望以p作为基底看待,这时候视y为自变量(这句话要好好理解,对比于原先是原基底,也就是i帽j帽),所以我们就要把式子转化成yTHy,我们希望在y为自变量的时候,该二次型没有交叉项,也就是希望H是个对角矩阵,然后通过代入后置换我们发现H=pTAp,而A是实对称矩阵,要使H为对角矩阵,则p的列向量就应该为相互正交的单位向量,是不是一切都串起来了。

所以,熟悉的人也知道,化为标准型后(其实就是将原基底化为了p基底,就是换了个视角下函数的式子肯定也不一样),轴就移动到了椭圆的长轴和短轴的位置,这些位置其实就是新的基底的方向。而在该基底下,x位置的东西就被视为y,然后Q(X)就视为新的基底下一个不含交叉项的椭圆方程。由于p为正交矩阵,它的作用只是移动了轴,对原图形不会进行任何的伸缩变换,所以函数值,长度等都没有发生改变。但是化为标准型后,很多东西都很好求,我们可以在新视角下,求出短轴和长轴,然后用Πab算出椭圆的面积。(要始终记得x = py,这个操作要一直一直记得,他表示y是x在p基底下面的表示)

长脑子了,线代可真是个美妙的东西!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值