目录
比如yolov3在coco和voc数据集上的预训练模型和权重列表如下:
全部源码均在PaddleDetection的官方Github上,地址如下:(本文用的版本是最新2.3的版本)
文章核心:
本片文章主要是通过利用PaddleDetection(飞桨)提供的框架,使用yolov3_darknet53、cascade_rcnn_dcn等经典网络达到对常规目标检测任务的轻量化实现,应用方面主要通过python端的部署(当然也可以通过c++的部署,官方地址里边有代码),并后续实现将模型部署到轻量化移动边缘设备中,从而实现轻量化嵌入式平台的深度学习任务,达到对深度物联网目标的追求!
1.效果图及视频展示
①图片展示


②视频展示
# 利用PaddleDetection部署自己的轻量级移动检测嵌入式平台(多种高性能网络模型)--Pytorch实现
2.背景
PaddleDetection 是百度飞桨推出的物体检测统一框架。支持现有的RCNN、SSD、YOLO等系列模型、支持 ResNet、ResNet-VD、ResNeXt、ResNeXt-VD、SENet、MobileNet、DarkNet等主干网络。针对不同的业务场景(性能、目标大小、准确率等)可以选择框架中的不同模块组合得到最适合的模型,实现任务。相比于tensorflow的Object_Detection,优势之一就是将YOLOv3这一目标检测的快速算法融合到了框架下。
地址:飞桨PaddlePaddle-源于产业实践的开源深度学习平台
3.安装PaddlePaddle
pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI
或者通过Github地址:
4.预训练模型的下载
PaddleDetection提供的非常丰富的预训练库,各种经典检测、分割、识别、追踪等任务的优秀框架模型供我们选择:

比如yolov3在coco和voc数据集上的预训练模型和权重列表如下:
YOLOv3 on COCO:
| 骨架网络 | 输入尺寸 | 每张GPU图片个数 | 学习率策略 | 推理时间(fps) | Box AP | 下载 | 配置文件 |
|---|---|---|---|---|---|---|---|
| DarkNet53(paper) | 608 | 8 | 270e | ---- | 33.0 | - | - |
| DarkNet53(paper) | 416 | 8 | 270e | ---- | 31.0 | - | - |
| DarkNet53(paper) | 320 | 8 | 270e | ---- | 28.2 | - | - |
| DarkNet53 | 608 | 8 | 270e | ---- | 39.0 | 下载链接 | 配置文件 |
| DarkNet53 | 416 | 8 | 270e | ---- | 37.5 | 下载链接 | 配置文件 |
| DarkNet53 | 320 | 8 | 270e | ---- | 34.6 | 下载链接 |

最低0.47元/天 解锁文章
1427

被折叠的 条评论
为什么被折叠?



