利用PaddleDetection部署自己的轻量级移动检测嵌入式平台(多种高性能网络模型)--Pytorch实现

目录

文章核心:

1.效果图及视频展示

2.背景

3.安装PaddlePaddle

4.预训练模型的下载

比如yolov3在coco和voc数据集上的预训练模型和权重列表如下:

5.模型导出(python端)

6.模型预测

1.图片预测

2.视频预测,帧率在10左右

3.文件夹下图片预测

当然也可以自己进行训练,相应的指令为:

安装过程中遇到的其他问题:


全部源码均在PaddleDetection的官方Github上,地址如下:(本文用的版本是最新2.3的版本)

PaddlePaddle/PaddleDetection: Object Detection toolkit based on PaddlePaddle. It supports object detection, instance segmentation, multiple object tracking and real-time multi-person keypoint detection. (github.com)

文章核心:

        本片文章主要是通过利用PaddleDetection(飞桨)提供的框架,使用yolov3_darknet53、cascade_rcnn_dcn等经典网络达到对常规目标检测任务的轻量化实现,应用方面主要通过python端的部署(当然也可以通过c++的部署,官方地址里边有代码),并后续实现将模型部署到轻量化移动边缘设备中,从而实现轻量化嵌入式平台的深度学习任务,达到对深度物联网目标的追求!

1.效果图及视频展示

①图片展示

000000570688

image-20211217212536786

②视频展示

# 利用PaddleDetection部署自己的轻量级移动检测嵌入式平台(多种高性能网络模型)--Pytorch实现

2.背景

        PaddleDetection 是百度飞桨推出的物体检测统一框架。支持现有的RCNN、SSD、YOLO等系列模型、支持 ResNet、ResNet-VD、ResNeXt、ResNeXt-VD、SENet、MobileNet、DarkNet等主干网络。针对不同的业务场景(性能、目标大小、准确率等)可以选择框架中的不同模块组合得到最适合的模型,实现任务。相比于tensorflow的Object_Detection,优势之一就是将YOLOv3这一目标检测的快速算法融合到了框架下。

地址:飞桨PaddlePaddle-源于产业实践的开源深度学习平台

3.安装PaddlePaddle

pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI

或者通过Github地址:

PaddlePaddle/PaddleDetection: Object Detection toolkit based on PaddlePaddle. It supports object detection, instance segmentation, multiple object tracking and real-time multi-person keypoint detection. (github.com)

4.预训练模型的下载

PaddleDetection提供的非常丰富的预训练库,各种经典检测、分割、识别、追踪等任务的优秀框架模型供我们选择:

比如yolov3在coco和voc数据集上的预训练模型和权重列表如下:

YOLOv3 on COCO:

骨架网络 输入尺寸 每张GPU图片个数 学习率策略 推理时间(fps) Box AP 下载 配置文件
DarkNet53(paper) 608 8 270e ---- 33.0 - -
DarkNet53(paper) 416 8 270e ---- 31.0 - -
DarkNet53(paper) 320 8 270e ---- 28.2 - -
DarkNet53 608 8 270e ---- 39.0 下载链接 配置文件
DarkNet53 416 8 270e ---- 37.5 下载链接 配置文件
DarkNet53 320 8 270e ---- 34.6 下载链接
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心之所向521

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值