python实现模拟退火算法

模拟退火算法(Simulated Annealing, SA)是一种启发式随机搜索算法,它模仿了物理学中固体物质的退火过程。在求解组合优化问题时,模拟退火算法从某一较高初温开始,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解。

以下是一个简单的 Python 实现模拟退火算法的示例,用于解决函数的最优化问题(例如寻找函数 f(x) = x^2 的最小值):

import math  
import random  
  
# 目标函数,例如 f(x) = x^2  
def objective_function(x):  
    return x ** 2  
  
# 模拟退火算法  
def simulated_annealing(initial_temp, min_temp, cooling_rate, max_iter, x_start):  
    current_x = x_start  
    current_energy = objective_function(current_x)  
    best_x = current_x  
    best_energy = current_energy  
    temp = initial_temp  
  
    for i in range(max_iter):  
        # 产生新解  
        new_x = current_x + random.uniform(-1, 1)  
        new_energy = objective_function(new_x)  
  
        # 判断是否接受新解  
        if new_energy < current_energy:  
            current_x = new_x  
            current_energy = new_energy  
            if new_energy < best_energy:  
                best_x = new_x  
                best_energy = new_energy  
        else:  
            # 以一定概率接受较差的解  
            if random.random() < math.exp(-(new_energy - current_energy) / temp):  
                current_x = new_x  
                current_energy = new_energy  
  
        # 降温  
        temp *= cooling_rate  
  
        # 判断是否终止  
        if temp < min_temp:  
            break  
  
    return best_x, best_energy  
  
# 参数设置  
initial_temp = 100  # 初始温度  
min_temp = 0.01     # 最小温度  
cooling_rate = 0.95 # 降温率  
max_iter = 1000     # 最大迭代次数  
x_start = 5         # 初始解  
  
# 运行模拟退火算法  
best_x, best_energy = simulated_annealing(initial_temp, min_temp, cooling_rate, max_iter, x_start)  
print(f"Best x: {best_x}, Best energy: {best_energy}")

当然可以!以下是一个简单的模拟退火算法的示例代码,使用 Python 实现: ```python import math import random # 目标函数,这里以一个简单的函数为例 def objective_function(x, y): return math.sin(x) + math.cos(y) # 模拟退火算法 def simulated_annealing(init_temp, final_temp, cooling_rate, num_iterations): # 初始化最优解和最优目标值 best_solution = None best_value = float('-inf') # 随机初始化当前解 current_solution = (random.uniform(-10, 10), random.uniform(-10, 10)) current_value = objective_function(current_solution[0], current_solution[1]) # 设置初始温度 current_temp = init_temp # 迭代搜索 for i in range(num_iterations): # 生成新解 new_solution = (current_solution[0] + random.uniform(-1, 1), current_solution[1] + random.uniform(-1, 1)) # 计算新解的目标值 new_value = objective_function(new_solution[0], new_solution[1]) # 计算目标值差异 delta = new_value - current_value # 判断是否接受新解 if delta > 0 or random.random() < math.exp(delta / current_temp): current_solution = new_solution current_value = new_value # 更新最优解 if current_value > best_value: best_solution = current_solution best_value = current_value # 降低温度 current_temp *= cooling_rate return best_solution, best_value # 参数设置 init_temp = 100 final_temp = 0.1 cooling_rate = 0.99 num_iterations = 1000 # 调用模拟退火算法 best_solution, best_value = simulated_annealing(init_temp, final_temp, cooling_rate, num_iterations) # 输出结果 print("Best solution:", best_solution) print("Best value:", best_value) ``` 以上示例代码中的目标函数是一个简单的函数 `sin(x) + cos(y)`,你可以根据自己的需要替换成其他函数。模拟退火算法的参数可以根据具体问题进行调整,如初始温度、终止温度、冷却率等。 希望能帮到你!如果有任何问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孺子牛 for world

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值