前缀和与差分

10 篇文章 0 订阅
10 篇文章 0 订阅

前缀和与差分的定义

前缀和的定义比较简单,对于一个序列 a i , b i a_i,b_i ai,bi有下列的定义, b i = a 1 + a 2 + a 3 + ⋅ ⋅ ⋅ + a i , a i = b i − b i − 1 b_i=a_1+a_2+a_3+···+a_i,a_i=b_i-b_{i-1} bi=a1+a2+a3++aiai=bibi1,则称 b b b a a a的前缀和, a a a b b b的差分。显然这两种是互逆操作。

前缀和的应用

前缀和基本上只有一个作用,就是求快速求某个区间的和

一维前缀和

b l = a 1 + a 2 + a 3 + ⋅ ⋅ ⋅ + a l b_l=a_1+a_2+a_3+···+a_l bl=a1+a2+a3++al
b r = a 1 + a 2 + a 3 + ⋅ ⋅ ⋅ + a r b_r=a_1+a_2+a_3+···+a_r br=a1+a2+a3++ar
b r + 1 = a 1 + a 2 + a 3 + ⋅ ⋅ ⋅ + a r + 1 b_{r+1}=a_1+a_2+a_3+···+a_{r+1} br+1=a1+a2+a3++ar+1
我们想求 [ l , r ] [l,r] [l,r]的区间之和,即 a l + a l + 1 + ⋅ ⋅ ⋅ + a r a_l+a_{l+1}+···+a_r al+al+1++ar,我们可以用 b r + 1 − b l b_{r+1}-b_l br+1bl来求(直接相减就可以得出)。
具体代码如下:

二维前缀和

b x 2 y 2 = ∑ i = 1 x 2 ∑ j = 1 y 2 a i j b_{{x_2}{y_2}}=\sum\limits_{i=1}^{x_2}\sum\limits_{j=1}^{y_2}{{a_{ij}}} bx2y2=i=1x2j=1y2aij

b x 1 x 2 = ∑ i = 1 x 1 ∑ j = 1 y 1 a i j b_{{x_1}{x_2}}=\sum\limits_{i=1}^{x_1}\sum\limits_{j=1}^{y_1}{{a_{ij}}} bx1x2=i=1x1j=1y1aij
b x 2 y 1 − 1 = ∑ i = 1 x 2 ∑ j = 1 y 1 − 1 a i j {b_{{x_2}{{y_1-1{}}}}}=\sum\limits_{i=1}^{x_2}\sum\limits_{j=1}^{y_1-1}{{a_{ij}}} bx2y11=i=1x2j=1y11aij
b x 1 − 1 y 2 = ∑ i = 1 x 1 − 1 ∑ j = 1 y 2 a i j b_{{{x_1}-1}{y_2}}=\sum\limits_{i=1}^{x_1-1}\sum\limits_{j=1}^{y_2}{{a_{ij}}} bx11y2=i=1x11j=1y2aij
若想求 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) ( x 2 , y 2 ) (x_2,y_2) (x2,y2)中区域的和,可用 b x 2 y 2 − b x 1 − 1 y 2 − b x 2 y 1 − 1 + b x 1 y 1 b_{{x_2}{y_2}}-b_{{{x_1-1}}{y_2}}-b_{{x_2}{y_1-1}}+b_{{x_1}{y_1}} bx2y2bx11y2bx2y11+bx1y1来求。

具体代码如下:

  1. 求前缀和的代码
for(int i=1;i<=n;i++){ //
    for(int j=1;j<=m;j++){
        b[i][j]=b[i-1][j]+b[i][j-1]-b[i-1][j-1]+a[i][j];
    }
}
  1. 求区间面积的代码
res=b[x2][y2]-b[x2][y1-1]-b[x1-1][y2]+b[x1-1][y1-1];

差分的应用

差分主要用于对某一区间同时进行加法的操作。

一维差分

有公式 a l = b l − b l − 1 a_l=b_l-b_{l-1} al=blbl1,对 b l b_l bl c c c,则有 a l + c , a l + 1 + c , a l + 2 + c , ⋅ ⋅ ⋅ a_l+c,a_{l+1}+c,a_{l+2}+c,··· al+c,al+1+c,al+2+c,
若想要对 [ L , R ] [L,R] [L,R]中的元素加c,只需要对 b l + c b_l+c bl+c,然后 b r + 1 − c b_{r+1}-c br+1c,然后对 b b b数组求前缀和就可以的出加 c c c操作后的 a a a数组

代码如下:

对差分数组进行插入操作

void insert(int l,int r,int c){
    b[l]+=c;
    b[r+1]-=c;
}
二维差分

二维差分的推理比较难写,大体就是先差分后求前缀和,这里直接给出代码:

在差分数组中进行插入操作

void insert(int x1,int y1,int x2,int y2,int c){
    b[x1][y1]+=c;
    b[x1][y2+1]-=c;
    b[x2+1][y1]-=c;
    b[x2+1][y2+1]+=c;
}

求前缀和

for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            a[i][j]=a[i-1][j]+a[i][j-1]-a[i-1][j-1]+b[i][j];
        }
    }
小结

这里有一个重点:我们对差分数组进行初始化的时候可以用插入操作直接完成
一维的有insert(l,l,c)
二维的有insert(x,y,x,y,c)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
前缀和差分是一类常用的算法,它们常常被用来优化一些区间操作的问题,如求区间和、区间最大值/最小值等等。下面我们将分别介绍前缀和差分的定义、用法和常见问题。 ## 前缀和 前缀和,顾名思义,就是把前面所有数的和都求出来,用一个数组存起来,以便之后的查询。 ### 定义 给定一个长度为 $n$ 的序列 $a$,令 $s_i = \sum_{j=1}^{i}a_j$,则 $s$ 称为序列 $a$ 的前缀和数组。 ### 用法 前缀和的主要作用是用 $O(1)$ 的时间复杂度求出一个区间 $[l,r]$ 的和,即 $s_r - s_{l-1}$。这是因为 $s_r$ 存储了序列从 $1$ 到 $r$ 的和,而 $s_{l-1}$ 存储了序列从 $1$ 到 $l-1$ 的和,因此区间 $[l,r]$ 的和可以通过两个前缀和相减计算得出。 前缀和的时间复杂度为 $O(n)$,因为需要遍历一遍序列求出前缀和数组。但是,如果有多个查询需要求区间和,那么使用前缀和可以将每次查询的时间复杂度降低到 $O(1)$。 ### 代码实现 下面是使用前缀和求区间和的代码实现: ```cpp vector<int> a; // 原序列 vector<int> s(a.size() + 1); // 前缀和数组 // 计算前缀和 for (int i = 1; i <= a.size(); i++) { s[i] = s[i - 1] + a[i - 1]; } // 查询区间 [l, r] 的和 int sum = s[r] - s[l - 1]; ``` ## 差分 差分前缀和相反,它主要用来对区间进行修改。我们可以利用差分数组进行区间修改,并最终得到修改后的序列。 ### 定义 给定一个长度为 $n$ 的序列 $a$,令 $d_i = a_i - a_{i-1}$($d_1 = a_1$),则 $d$ 称为序列 $a$ 的差分数组。 ### 用法 差分的主要作用是对区间进行修改。假设我们需要将区间 $[l,r]$ 的数加上 $k$,我们可以将差分数组的 $d_l$ 加上 $k$,将 $d_{r+1}$ 减去 $k$。这样,对差分数组求前缀和,就可以得到修改后的序列。 具体来说,我们可以按照以下步骤进行区间修改: 1. 对差分数组的 $d_l$ 加上 $k$; 2. 对差分数组的 $d_{r+1}$ 减去 $k$; 3. 对差分数组求前缀和,得到修改后的序列。 差分的时间复杂度为 $O(n)$,因为需要遍历一遍序列求出差分数组。但是,如果有多次区间修改需要进行,那么使用差分可以将每次修改的时间复杂度降低到 $O(1)$。 ### 代码实现 下面是使用差分进行区间修改的代码实现: ```cpp vector<int> a; // 原序列 vector<int> d(a.size() + 1); // 差分数组 // 计算差分数组 for (int i = 1; i < a.size(); i++) { d[i] = a[i] - a[i - 1]; } // 修改区间 [l, r],将数加上 k d[l] += k; d[r + 1] -= k; // 对差分数组求前缀和,得到修改后的序列 for (int i = 1; i < d.size(); i++) { a[i] = a[i - 1] + d[i]; } ``` ## 常见问题 ### 1. 差分数组的长度是多少? 差分数组的长度应该比原序列长度多 1,因为 $d_1 = a_1$。 ### 2. 什么情况下使用前缀和?什么情况下使用差分? 如果需要进行多次区间查询,那么使用前缀和可以将每次查询的时间复杂度降低到 $O(1)$;如果需要进行多次区间修改,那么使用差分可以将每次修改的时间复杂度降低到 $O(1)$。 ### 3. 前缀和差分的本质区别是什么? 前缀和差分都是用来优化区间操作的算法,它们的本质区别在于: - 前缀和是通过预处理前缀和数组来优化区间查询; - 差分是通过预处理差分数组来优化区间修改。 ### 4. 前缀和差分能否同时使用? 当然可以。如果需要同时进行区间查询和修改,我们可以先使用差分数组对区间进行修改,然后再对差分数组求前缀和,得到修改后的序列。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值