数论算法--快速幂、欧几里得算法、扩展欧几里得算法、求逆元、线性同余方程

10 篇文章 0 订阅
10 篇文章 0 订阅

快速幂

markdown中符号不太好打,举个例子: 3 11 = 3 1011 = 3 8 + 3 2 + 3 1 3^{11}=3^{1011}=3^8+3^2+3^1 311=31011=38+32+31

代码如下:

typedef long long ll;
int qmi(int a,int k,int p){ // quickMi的缩写
    int res=1;
    while(k){
        if(k&1)res=(ll)a*res%p; // 乘法有可能溢出
        k>>=1;
        a=(ll)a*a%p;			// 有可能溢出
    }
    return res;
}

欧几里得算法(辗转相除法)

欧几里得算法的核心是 g c d ( a , b ) = g c d ( b , a % b ) gcd(a,b)=gcd(b,a\%b) gcd(a,b)=gcd(b,a%b)

迭代代码:

int gcd(int a,int b){
    int t=a%b;
    while(t){
        a=b;
        b=t;
        t=a%b;
    }
    return b;
}

递归代码:

int gcd(int a,int b){
    return b?gcd(b,a%b):a;
}

扩展欧几里得算法

裴蜀定理:如果 a , b a,b a,b为正整数,则存在整数 x , y x,y x,y使得 a x + b y = g c d ( a , b ) ax+by=gcd(a,b) ax+by=gcd(a,b)

一个例子: g c d ( 252 , 198 ) = 18 , 18 = 4 ∗ 252 − 5 ∗ 198 gcd(252,198)=18,18=4*252-5*198 gcd(252,198)=1818=42525198

迭代版本如下:
实例可看《离散数学及其应用(第八版)》例18

int exgcd(int a,int b,int &x,int &y){
    vector<int>s,f; 
    s.push_back(1);  // 插入的数是固定的
    s.push_back(0);
    f.push_back(0);
    f.push_back(1);
    vector<int>q;
    int t=a%b;
    q.push_back(a/b);
    while(t){
        a=b;
        b=t;
        t=a%b;
        q.push_back(a/b); 
    }  // 求最大公约数
    for(int i=2;i<=q.size();i++){
        int s_temp=s[i-2]-s[i-1]*q[i-2];
        s.push_back(s_temp);
        int t_temp=f[i-2]-f[i-1]*q[i-2];
        f.push_back(t_temp);
    }
    x=s.back(),y=f.back();
}

递归版本:

int exgcd(int a,int b,int &x,int &y){
    if(!b){
        x=1;
        y=0;
        return a;
    }
    int d=exgcd(b,a%b,y,x);
    y-=a/b*x;
    return d;
}

逆元

除法比较复杂,最好转化为除法,若 a b ≡ a x ( m o d   m ) \frac{a}{b} \equiv ax(mod \ m) baax(mod m),则 x x x b b b的逆元。
上式可变形为变形为 b x ≡ 1 ( m o d   m ) bx \equiv 1(mod \ m) bx1(mod m)

扩展欧几里得求逆元

继续变形 b x − m y ≡ 1 ( m o d   m ) bx-my \equiv 1(mod \ m) bxmy1mod m,转化为 b x + m y ′ ≡ 1 ( m o d   p ) bx+my^{'} \equiv 1(mod\ p) bx+my1(mod p),这个可以用扩展欧几里得算法 a x + b y ≡ g c d ( a , b ) ax+by \equiv gcd(a,b) ax+bygcd(a,b),来求解,只不过这里 g c d ( a , b ) = 1 gcd(a,b)=1 gcd(a,b)=1

int exgcd(int a,int b,int &x,int &y){ // 扩展欧几里得算法
    if(!b){
        x=1,y=0;
        return a;
    }
    int d=exgcd(b,a%b,y,x);
    y-=(ll)a/b*x;
    return d;
}

void mod_reverse(int a,int m){  	// 求逆元
    int x,y;
    int d=exgcd(a,m,x,y);
    if(d!=1)cout<<"不能构成逆元"<<endl;  // 判断a与m的最小公倍数是否为1,若为1,则有逆元,若不为1,则没有逆元。
    else cout<<"逆元为"<<(x%m+m)%m<<endl;
}

快速幂求逆元

快速幂求逆元需要由一定的限制条件。
b x ≡ 1 ( m o d   m ) bx \equiv 1(mod \ m) bx1(mod m)
由费马小定理可知:当 b b b为质数时, b n − 1 ≡ 1 ( m o d   m ) b^{n-1} \equiv 1(mod\ m) bn11(mod m)
变形为 b ∗ b n − 2 ≡ 1 ( m o d   m ) b*b^{n-2} \equiv 1(mod \ m) bbn21(mod m),可得 x = b n − 2 x=b^{n-2} x=bn2,即b的逆元为 b n − 2 b^{n-2} bn2 b , m b,m b,m互质,即 a % p ! = 0 a\% p !=0 a%p!=0

代码如下:

int qmi(int a,int k,int p){ // 求快速幂
    int res=1;
    while(k){
        if(k&1)res=(LL)res*a%p;
        k>>=1;
        a=(LL)a*a%p;
    }
    return res;
}

void mod_reverse(int a,int p){  // 求逆元
    if(a%p){	// a,p互质
        cout<<"逆元为:"<<qmi(a,p-2,p)<<endl;
    }
    else cout<<"不存在逆元"<<endl;
}

线性同余方程

形如 a x b ≡ ( m o d   m ) axb \equiv (mod \ m) axb(mod m),其中 m m m为正整数, a , b a,b a,b为整数, x x x为变量。这样的方程,称为线性同于方程。
变形 a x ≡ m y + b ax \equiv my+b axmy+b
–> a x − m y ≡ b ax-my\equiv b axmyb
–> a x + m y ′ = b ax+my^{'}=b ax+my=b
又因为 a k + m l = g c d ( a , m ) ak+ml=gcd(a,m) ak+ml=gcd(a,m),因此 b b b一定是 g c d ( a , b ) gcd(a,b) gcd(a,b)的倍数,因为 a a a g c d ( a , m ) gcd(a,m) gcd(a,m) m m m也是 g c d ( a , b ) gcd(a,b) gcd(a,b)的倍数,所以他们的倍数相加 a x + m y ax+my ax+my也是 g c d ( a , b ) gcd(a,b) gcd(a,b)的倍数。可通过扩展欧几里得算法求。最后判断 b % a = = 0 b\%a==0 b%a==0,然后乘 b / g c d ( a , m ) b/gcd(a,m) b/gcd(a,m)即可。

代码如下:

int exgcd(int a,int b,int &x,int &y){  // 扩展欧几里得算法
    if(!b){
        x=1,y=0;
        return a;
    }
    int d=exgcd(b,a%b,y,x);
    y-=a/b*x;
    return d;
}

void linear(int a,int b,int m){  //解线性同余方程
    int x,y;
    int d=exgcd(a,m,x,y);
    if(b%d)cout<<"不存在上述方程"<<endl;
    else cout<<(ll)x*(b/d)%m<<endl; //乘 b/d。
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值