K-means 聚类算法

K-means算法是一种迭代的聚类分析方法,通过选取初始聚类中心,计算对象与聚类中心的距离来划分对象。算法过程包括迭代更新聚类中心直至满足终止条件,如聚类中心无变化或误差平方和最小。欧氏距离是计算对象间距离的常用方式,聚类中心由所属对象的均值确定。K-means的应用在于数据分类和聚类。
摘要由CSDN通过智能技术生成

- K-means 算法主要内容

  • k-means算法概述
  • k-means算法详解
  • k-means算法过程

1、k-means算法概述

k-means是一种迭代求解的聚类分析算法,其方法是随机选取K个对象(点)作为初始的聚类中心,然后计算其他对象(点)与各个聚类中心之间的距离,把每个对象(点)分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象(点)就代表一个聚类。各个聚类被分配完后,各个聚类的聚类中心会根据聚类中现有的对象(点)被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小。

2、k-means算法详解在这里插入图片描述

  1. 随机选取k个聚类中心(一般自主设定k为多少)

  2. 计算其他对象与这k个聚类中心之间的距离,将其他对象划分到相应的聚类中心所对应

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值