数值核反应堆大数据及其应用

本文介绍了数值核反应堆大数据在建模优化和科学发现中的应用,探讨了其多样性和关联性特征。通过神经网络、聚类算法等,实现了分子动力学势函数的建模优化和级联碰撞团簇的有效划分,同时利用数据挖掘分析进行材料科学发现,提出了基于大数据的流固耦合计算方法。这些研究证明了数值核反应堆大数据在提升模拟性能和推动科学理解方面的潜力。
摘要由CSDN通过智能技术生成

07844073f3845a4f79e5ac4a943b602e.png

点击上方蓝字关注我们

2f25a14b316deeda95497692e748cd6c.png


数值核反应堆大数据及其应用

汪岸, 任帅, 苗雪, 董玲玉, 朱迎, 陈丹丹, 胡长军

北京科技大学,北京 100083

 摘要数值核反应堆(数值堆)运行过程中涉及的海量数据可被用于优化现有数值堆模型、获取核能领域科学发现、推动数值堆研究。对现有的数据驱动建模和堆内微观现象预测的相关工作进行综述。在此基础上,结合领域特点提出了数值核反应堆大数据的概念,并分析了它作为工业大数据和模拟大数据的重要特征。以中国数值反应堆原型系统(CVR 1.0)为例,从数值堆大数据的多样性、关联性、非精确性等特征出发,运用神经网络、数理统计、数值分析等多学科的技术开展了建模优化和科学发现两个方向的研究工作,证明了数值核反应堆大数据特征对数值堆研究的指导作用。

关键词数值核反应堆大数据 ; 工业大数据 ; 数值核反应堆 ; 大数据挖掘

63c9857eb1a84945dad310fe6ada059e.png

论文引用格式:

汪岸, 任帅, 苗雪, 董玲玉, 朱迎, 陈丹丹, 胡长军. 数值核反应堆大数据及其应用[J]. 大数据, 2021, 7(5): 40-56.

An WANG, Shuai REN, Xue MIAO, Lingyu DONG, Ying ZHU, Dandan CHEN, Changjun HU. Big data of numerical nuclear reactor and its application[J]. Big Data Research, 2021, 7(5):40-56.

69e32fb8423427e8493e4dd942bc9f55.png

1 引言

数值核反应堆(以下简称数值堆)是一种基于超级计算机实现的软件系统,用于核反应堆内多物理耦合过程的高保真数值模拟和预测。数值堆被当成实际反应堆“外在”和“内在”的镜像,可以支撑包括反应堆的设计、建筑安装、运行、退役等过程在内的全周期从微观机理到宏观现象的研究。数值堆在运行中涉及的大量数据通常有两种用途:一是用于建模优化,即作为耦合计算的中间数据,辅助模型的建立和改进;二是用于科学发现,即作为研究分析的原始数据,获取对材料、机理的认识。

这些数据在数值堆这一复杂的多物理场模拟系统中流动,且进行精细计算,可以轻易产生PB级的数据量,因此在存储上要借助高吞吐、高并发的并行文件系统,在计算上要依赖高性能、高可用的处理器资源。在不同计算尺度、不同服役环境下,数据虽然体现为不同的含义、形式,但是它们都属于与核反应堆相关的计算数据,相互之间存在紧密的关联。从计算的部分来看,数值堆是核反应堆各种物理过程及其耦合模拟的算法实现,其中各过程通过计算数据相连;从数据的部分来看,数值堆是核反应堆各种计算数据的关联和相互转换,其中各数据通过物理过程相连。

数值核反应堆大数据就是数值堆运行过程中涉及的数据总和。作为数值堆的关键组成部分,数值核反应堆大数据具有两方面不可忽视的重要作用:对“内”,它为工程人员提供了形式复杂、关联紧密的计算数据,对其关联性的研究可用于改进数值堆的模拟性能;对“外”,它为科研人员提供了大量可供进一步挖掘分析的模拟数据,其中可能蕴含着有关核反应堆材料、物理化学机理的新认识。大数据技术的引入使数值核反应堆大数据的价值比以往更清晰地呈现出来,从而为发挥数值核反应堆大数据对“内”和对“外”的作用奠定了基础。

本文提出了数值核反应堆大数据的概念,阐述了数值堆大数据最重要的特点。从这些特点出发,引出了不同于传统数值堆模拟的研究方向,也就是基于数据的建模优化和科学发现。以中国数值反应堆原型系统(China virtual reactor 1.0, CVR1.0)为研究对象,本文论述了基于数值堆大数据的研究方向及成果,有力地证明了数据自身价值、数据与数据的关联性对数值堆研究的推动作用。

2 相关工作

随着计算机硬件水平的发展及核反应堆数据的积累,已有研究中利用机器学习、人工智能等技术手段对数值核反应堆大数据进行的挖掘分析着重于两个方面的研究工作:一是优化模拟模型,二是基于数据的挖掘分析进行科学发现。

2.1 数据驱动的建模优化方法

数据驱动的建模优化就是利用数值堆大数据改进数值堆的各种数值算法,具体涉及对整个计算模型或模型中部分模块的改进、替换,以及利用数据进行工况预测或模型计算。

(1)整个计算模型的改进和替换研究

改进、替换整个数值计算方法的研究重点集中在建立计算过程中输入与输出的非线性关系。例如,在中子学的研究中,基于细胞神经网络求解简单平板几何上的中子输运方程;将基于人工神经网络的偏微分求解方法应用于非线性源扩散、中子点动力学、辐射输运、一般非线性偏微分方程求解等许多与数值堆相关的问题中。在计算流体力学(computational fluid dynamics,CFD)的研究中,利用基于小样本集的机器学习方法解决数据价值密度低的问题及求解流体力学的NavierStokes方程。上述研究工作极大地节省了求解复杂方程所需的计算资源,但在比较复杂、缺少样本的几何条件下仍然难以达到理想效果。

(2)模型部分模块的改进研究

在模型的部分模块、算法中也可以基于数据驱动提出改进策略。例如,在计算流体力学的研究中,以核反应堆大数据为驱动修正现有湍流模型的经验系数;利用深度神经网络从高精度模拟数据中学习雷诺应力各向异性张量模型;利用监督学习算法建立湍流模型中的闭包项,并将闭包项插入计算流体力学数值模拟中,以得到更好的湍流物理表示;通过训练卷积网格来预测任意给定几何的最优网格密度,加速最优网格的生成。在材料势函数的研究中,通过机器学习对势函数库进行学习,开发用于势函数计算的机器学习模型,该模型可以在保证势函数精度的基础上将计算时间减少几个数量级;将势函数机器学习模型和分子动力学(molecular dynamics,MD)模拟软件LAMMPS集成起来,扩大原有计算规模。上述研究工作通过对部分模块或算法进行改进来达到优化模型整体的目的。

(3)工况预测或模型数据研究

还有许多研究集中在利用实验数据、设备数据直接进行工况预测,或者为数值堆提供计算数据。例如,在中子物理计算方面,基于人工神经网络的方法可用于中子深度剖面分析及中子能谱解谱。在计算流体力学方面,自联想神经网络可用于核电站在线监测及传感器校验技术构建;支持向量机模型与多元状态估计方法可用于核电站的运行工况估计;改进径向基函数网络模型和遗传算法可用于核电站瞬态工况诊断识别技术的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值