《大数据》专题征文:大模型与知识图谱
(截稿时间:2024年6月30日)
大语言模型与知识图谱作为知识表示与计算的不同手段,二者的相互关系与协同作用已成为人工智能领域的研究热点。一方面,大模型展现了强大的推理能力,但面临着缺乏事实知识、存在幻觉和可解释性差等诸多问题;另一方面,知识图谱具有准确、可解释等优点,但存在图谱构建成本高,知识不完备,知识难以利用等问题。发挥大语言模型与知识图谱的各自优势,实现两个前沿领域的结合和交叉,为我们带来了新的机遇与挑战。
本刊以“大模型与知识图谱”为主题进行征文,旨在集中展示这一领域内的最新技术和理论研究成果。
专题主题:大模型与知识图谱
组稿专家:靳小龙 中科院计算所研究员
01
征稿范围
包括但不限于以下主题:
1)大模型知识萃取技术;
2)大模型知识编辑技术;
3)大模型幻觉消除技术;
4)大模型驱动的本体自动构建技术;
5)大模型驱动的知识获取技术;
6)大模型驱动的知识图谱补全技术;
7)大模型驱动的知识图谱问答技术;
8)知识图谱融合更新技术;
9)知识增强的大模型推理技术;