苹果叶片病害识别中的深度学习研究

18 篇文章 2 订阅

苹果叶片病害识别中的深度学习研究

1、研究内容

基于DenseNet-121深度卷积网络,提出了回归、多标签分类和聚焦损失函数3种苹果叶片病害识别方法。

2、数据集介绍

用于识别的图像数据集来源于Aichalenger-Plant-Disease-Recognition。苹果叶片数据集由健康苹果、一般苹果黑星病、严重苹果黑星病、苹果灰斑病、一般雪松苹果锈病、严重雪松苹果锈病的症状图像组成。所有的数据图像尺寸归一化到1281283。通过随机选择的图像,以8:2的比率将构建的数据集分成训练数据集和测试数据集。在训练数据集中的症状图像中,85%用于训练,15%用于验证。

3、实验过程

为了扩大识别数据集,减少过拟合的机会,在训练过程中采用了随机旋转、随机平移、随机缩放、随机反转、裁剪和归一化等方法进行数据增强。基于Densenet-121深度卷积网络,提出了回归、多标签分类和焦点损失函数3种方法识别苹果叶部病害,包括健康苹果、一般苹果黑星病、严重苹果黑星病、苹果灰斑病、一般雪松苹果锈病和严重雪松苹果锈病。

4、相关结论

定量实验证明,与传统的带交叉熵损失函数的单标签多分类方法相比,上述方法在不平衡数据集上取得了更好的识别效果。三种方法在测试数据集上的准确率分别为93.51%、93.31%和93.71%。

5、论文中出现的相关图表

在这里插入图片描述

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@@南风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值