机试题——服务逃生

题目描述

小明需要在多个业务节点之间选择最快的逃生节点集,并考虑每个节点的剩余业务容量。业务节点之间的关系可以看作一个图。小明有一个网络时延表,表示每个节点到其他节点的通信延迟;还有一个剩余业务容量表,表示每个节点的剩余业务容量。在一个节点故障时,需要选择一个或多个逃生节点,确保逃生路径的时延最小,并且逃生节点集各节点剩余容量的总和足够容纳故障节点的业务量。当故障节点与多个节点的最短距离相同时,优先选择编号较小的节点容灾;如果逃生节点集中多个节点的最短距离相同时,按编号从小到大的顺序排列。

输入描述

  1. 第一行:一个整数n,表示业务节点数(2 <= n <= 10000),节点编号从0开始,依次递增。
  2. 第二行到第1+n行:表示业务节点间的网络时延矩阵表delayMatrix,其中delayMatrix[i][j]表示节点i到节点j的通信时延。
    • 如果节点i和节点j之间没有直接相连的边,则delayMatrix[i][j]-1
    • 节点间有边时延范围为1 <= delayMatrix[i][j] <= 1000
    • 输入保证delayMatrix[i][j] == delayMatrix[j][i]
  3. 2+n行:表示各业务节点的剩余容量表remainingCapacity,其中remainingCapacity[i]表示节点i的剩余业务容量(1 <= remainingCapacity[i] <= 100)。
  4. 3+n行:表示故障业务节点编号faultyNode,表示发生故障的节点(0 <= faultyNode <= n-1)。
  5. 4+n行:表示受损业务节点需要迁移的业务量,受损业务量的范围为(0, 1000]

输出描述

返回符合条件的逃生路径节点编号列表,用空格分隔。当所有节点都不够故障节点业务容灾时,输出所有容灾节点。

用例输入

4
-1 5 -1 8
5 -1 1 3
-1 1 -1 4
8 3 4 -1
10 20 15 25
2
12
1
  • 故障节点为2,需要迁移的业务量为12
  • 节点1的剩余容量为20,可以容纳故障节点的业务量,且距离最短(1),因此选择节点1作为逃生节点。

解题思路

  1. 问题建模

    • 该问题可以看作是一个最短路径问题,结合容量约束
    • 使用Dijkstra算法计算故障节点到其他所有节点的最短路径。
    • 选择满足容量约束的节点作为逃生节点。
  2. Dijkstra算法

    • 使用优先队列(小顶堆)实现Dijkstra算法,计算故障节点到其他所有节点的最短路径。
    • 优先队列存储当前节点的最短路径和节点编号。
  3. 选择逃生节点

    • 按最短路径从小到大排序,优先选择编号较小的节点。
    • 累加选择的节点的剩余容量,直到满足故障节点的业务量需求。
  4. 特殊情况

    • 如果所有节点的剩余容量总和仍不足以容纳故障节点的业务量,则输出所有节点。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<algorithm>
#include<string>
#include<vector>
#include<unordered_map>
#include<unordered_set>
#include<queue>
#include<set>
#include<list>
#include<sstream>
#include<bitset>
#include<stack>
#include<climits>
#include<iomanip>
#include<cstdint>
using namespace std;

int delay[10005][10005];
int capacity[10005];

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int n;
    cin >> n;

    // 输入网络时延矩阵
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            cin >> delay[i][j];
        }
    }

    // 输入剩余容量表
    for (int i = 0; i < n; i++) {
        cin >> capacity[i];
    }

    // 输入故障节点编号和需要迁移的业务量
    int fault, ne;
    cin >> fault >> ne;

    // 初始化最短路径数组
    vector<int> dis(n, INT_MAX);
    dis[fault] = 0;

    // 使用优先队列实现Dijkstra算法
    priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q;
    q.push({0, fault});

    while (!q.empty()) {
        int cur_dis = q.top().first;
        int cur_index = q.top().second;
        q.pop();

        for (int i = 0; i < n; i++) {
            if (delay[cur_index][i] == -1) continue;
            int next_dis = cur_dis + delay[cur_index][i];
            if (next_dis < dis[i]) {
                dis[i] = next_dis;
                q.push({next_dis, i});
            }
        }
    }

    // 按最短路径从小到大排序
    vector<pair<int, int>> temp;
    for (int i = 0; i < n; i++) {
        if (dis[i] != INT_MAX && dis[i] != 0) {
            temp.push_back({dis[i], i});
        }
    }
    sort(temp.begin(), temp.end());

    // 选择逃生节点
    vector<int> res;
    for (int i = 0; i < temp.size(); i++) {
        ne -= capacity[temp[i].second];
        res.push_back(temp[i].second);
        if (ne <= 0) break;
    }

    // 输出结果
    for (int i = 0; i < res.size() - 1; i++) {
        cout << res[i] << " ";
    }
    cout << res[res.size() - 1];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值