题目描述
小明需要在多个业务节点之间选择最快的逃生节点集,并考虑每个节点的剩余业务容量。业务节点之间的关系可以看作一个图。小明有一个网络时延表,表示每个节点到其他节点的通信延迟;还有一个剩余业务容量表,表示每个节点的剩余业务容量。在一个节点故障时,需要选择一个或多个逃生节点,确保逃生路径的时延最小,并且逃生节点集各节点剩余容量的总和足够容纳故障节点的业务量。当故障节点与多个节点的最短距离相同时,优先选择编号较小的节点容灾;如果逃生节点集中多个节点的最短距离相同时,按编号从小到大的顺序排列。
输入描述
- 第一行:一个整数
n
,表示业务节点数(2 <= n <= 10000
),节点编号从0
开始,依次递增。 - 第二行到第
1+n
行:表示业务节点间的网络时延矩阵表delayMatrix
,其中delayMatrix[i][j]
表示节点i
到节点j
的通信时延。- 如果节点
i
和节点j
之间没有直接相连的边,则delayMatrix[i][j]
为-1
。 - 节点间有边时延范围为
1 <= delayMatrix[i][j] <= 1000
。 - 输入保证
delayMatrix[i][j] == delayMatrix[j][i]
。
- 如果节点
- 第
2+n
行:表示各业务节点的剩余容量表remainingCapacity
,其中remainingCapacity[i]
表示节点i
的剩余业务容量(1 <= remainingCapacity[i] <= 100
)。 - 第
3+n
行:表示故障业务节点编号faultyNode
,表示发生故障的节点(0 <= faultyNode <= n-1
)。 - 第
4+n
行:表示受损业务节点需要迁移的业务量,受损业务量的范围为(0, 1000]
。
输出描述
返回符合条件的逃生路径节点编号列表,用空格分隔。当所有节点都不够故障节点业务容灾时,输出所有容灾节点。
用例输入
4
-1 5 -1 8
5 -1 1 3
-1 1 -1 4
8 3 4 -1
10 20 15 25
2
12
1
- 故障节点为
2
,需要迁移的业务量为12
。 - 节点
1
的剩余容量为20
,可以容纳故障节点的业务量,且距离最短(1
),因此选择节点1
作为逃生节点。
解题思路
-
问题建模:
- 该问题可以看作是一个最短路径问题,结合容量约束。
- 使用Dijkstra算法计算故障节点到其他所有节点的最短路径。
- 选择满足容量约束的节点作为逃生节点。
-
Dijkstra算法:
- 使用优先队列(小顶堆)实现Dijkstra算法,计算故障节点到其他所有节点的最短路径。
- 优先队列存储当前节点的最短路径和节点编号。
-
选择逃生节点:
- 按最短路径从小到大排序,优先选择编号较小的节点。
- 累加选择的节点的剩余容量,直到满足故障节点的业务量需求。
-
特殊情况:
- 如果所有节点的剩余容量总和仍不足以容纳故障节点的业务量,则输出所有节点。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<algorithm>
#include<string>
#include<vector>
#include<unordered_map>
#include<unordered_set>
#include<queue>
#include<set>
#include<list>
#include<sstream>
#include<bitset>
#include<stack>
#include<climits>
#include<iomanip>
#include<cstdint>
using namespace std;
int delay[10005][10005];
int capacity[10005];
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int n;
cin >> n;
// 输入网络时延矩阵
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cin >> delay[i][j];
}
}
// 输入剩余容量表
for (int i = 0; i < n; i++) {
cin >> capacity[i];
}
// 输入故障节点编号和需要迁移的业务量
int fault, ne;
cin >> fault >> ne;
// 初始化最短路径数组
vector<int> dis(n, INT_MAX);
dis[fault] = 0;
// 使用优先队列实现Dijkstra算法
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q;
q.push({0, fault});
while (!q.empty()) {
int cur_dis = q.top().first;
int cur_index = q.top().second;
q.pop();
for (int i = 0; i < n; i++) {
if (delay[cur_index][i] == -1) continue;
int next_dis = cur_dis + delay[cur_index][i];
if (next_dis < dis[i]) {
dis[i] = next_dis;
q.push({next_dis, i});
}
}
}
// 按最短路径从小到大排序
vector<pair<int, int>> temp;
for (int i = 0; i < n; i++) {
if (dis[i] != INT_MAX && dis[i] != 0) {
temp.push_back({dis[i], i});
}
}
sort(temp.begin(), temp.end());
// 选择逃生节点
vector<int> res;
for (int i = 0; i < temp.size(); i++) {
ne -= capacity[temp[i].second];
res.push_back(temp[i].second);
if (ne <= 0) break;
}
// 输出结果
for (int i = 0; i < res.size() - 1; i++) {
cout << res[i] << " ";
}
cout << res[res.size() - 1];
return 0;
}