目标检测-Oriented RepPoints for Aerial Object Detection(CVPR 2022)

目标检测-Oriented RepPoints for Aerial Object Detection(CVPR 2022)

论文地址:Oriented RepPoints for Aerial Object Detection
代码地址:OrientedRepPoints

论文摘要

与一般物体不同,航空目标通常是非轴对准的,任意方向上具有杂乱的环境。与回归边界盒方向的主流方法不同,本文通过利用自适应点表示,提出了一种有效的自适应点学习方法,用于航空目标检测,该方法能够捕获任意定向实例的几何信息。为此,提出了三种定向转换函数,以便于准确定向的分类和定位。此外,我们提出了一种有效的自适应点学习质量评估和样本分配方案,用于在训练过程中选择面向代表性的代表点样本,该方案能够从相邻对象或背景噪声中捕获非轴对准特征。引入了一个空间约束来惩罚离群点,以进行快速(roust)自适应学习。在四个具有挑战性的航空数据集(包括DOTA、HRSC2016、UCAS-AOD和DIOR-R)上的实验结果证明了我们提出的方法的有效性。

一、问题背景

  • 航空图像中的目标通常是任意定向密集分布
  • 主流方法:将航空目标检测视为一个旋转目标定位问题,位于主导地位的是基于方向回归的检测器(一般检测器+定向参数)
    ···········································································································
    流程:对目标框进行定位→对目标进行分类→回归预测出一个框的旋转角度
    问题:损失不连续、回归不一致,因此猜测基于旋转角度的方向预测是不准的
    ···········································································································
  • RepPoint点集方法:使用RepPoints点集表示目标框架,对目标进行定位和结构表示,通过点集表示的目标结构直接回归出带有方向的检测框,这样就避免了对角度的预测
    ···········································································································
    问题:只能根据语义特征回归关键点而忽略有效衡量学习点的质量,这可能导致检测航空图像中密集分布复杂的非轴对齐物体的性能较差
    ···········································································································
  • Oriented RepPoints:本文提出的方法,不仅实现了精确定位的航空探测,而且还捕获了任意定向航空实例的底层几何结构
  • (a)方向(b)点集

二、主要贡献

  • 一种有效的航空目标检测器,称为Oriented RepPoints,其中引入柔性自适应点作为表示形式,以实现定向目标检测
  • 一种新的自适应点学习的质量评估和样本分配方案,该方案不仅从分类、定位中选择点样本,而且从定位、点向特征相关性中选择点样本
  • 在四个具有挑战性的数据集上进行了广泛的实验,显示了很好的定性和定量结果

三、Oriented RepPoints

1、网络框架

Oriented RepPoints网络框架

2、自适应点学习

引入了定向转换函数,将每个特征图中的点集(9个点)转换成了有向框

作者提出了三种定向转换函数

  • MinAeraRect:在点集中选择具有最小面积的旋转矩形→生成矩形
  • NearestGTCorner:找4个距离点集最近的采样点作为定向边界框的角点→生成不规则四边形
  • ConvexHull:利用Jarvis March算法,找到包围所有采样点的外接多边形→生成不规则多边形

使用MinAeraRect来得到标准的旋转矩形预测,并使用NearestGTCorner和ConvexHull来优化训练过程中的自适应点学习

空间约束:

  • 使用GT的角点来衡量损失,使用GIoU损失
  • 对分布在GT范围以外的离群点做出惩罚

3、自适应点学习质量评估和样本分配

提出了APPA,将自适应点的代表性样本作为训练阶段的正样本

(1)从四个方面衡量自适应点的质量:
  • 分类质量 Q c l s Qcls Qcls
  • 定位质量 Q l o c Qloc Qloc
  • 定向质量 Q o r i Qori Qori
  • 逐点相关性质量 Q p o c Qpoc Qpoc
(2)动态K标签分配

将每次迭代时的前k个样本分配为训练的正样本: k = σ ∗ N t k = σ∗Nt k=σNt
σ σ σ:采样比
N t Nt Nt:参与质量评估的所有点集

四、实验

在DOTA测试集上的点集的检测结果示例

### 回答1: oriented reppoints是一种用于目标检测的算法,它可以在图像中检测出物体的位置和方向。它的特点是可以准确地定位物体的中心点,并且可以检测出物体的旋转角度,适用于需要精确检测物体方向的场景,比如自动驾驶中的车辆检测。 ### 回答2: Oriented RepPoints是一种基于点云的3D目标检测方法。目标检测计算机视觉中的一个重要任务,其目的是在给定的图像或点云中准确地识别出物体并标记出其边界框和姿态信息。 Oriented RepPoints是一种基于点云的检测方法,它通过将点云表示为一系列有序的操作,从而实现对目标的有效识别。首先,通过对点云进行采样,生成一组有代表性的稀疏点。然后,对这些稀疏点进行旋转,使其具有不同的姿态信息。接下来,采用一个神经网络模型来预测目标的类别、边界框、偏移量和角度信息。 Oriented RepPoints方法的关键思想是使用可旋转的代表性点来表示目标的不同姿态和形状。通过使用可旋转的点作为目标检测的基本单元,可以在不同姿态下准确地检测目标,从而提高检测精度和鲁棒性。 与传统的基于体素网格的方法相比,Oriented RepPoints的优势在于它能够更准确地捕捉目标的细节和形状信息,并且具有更好的旋转不变性。另外,由于点云数据的稀疏性,Oriented RepPoints可以在提高检测效率的同时保持较低的计算和存储成本。 总的来说,Oriented RepPoints是一种创新的基于点云的目标检测方法,通过使用可旋转的代表性点,可以实现对目标的准确识别和姿态估计。它在3D目标检测领域具有重要的应用前景,并为我们提供了一种新的思路和方法来处理复杂的物体检测问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值