【NOJ1203】【算法实验四】装盘子

1203.装盘子

时限:1000ms 内存限制:10000K 总时限:3000ms

描述

N人为了大快朵颐,行至云餐二楼,取了N个盘子,打了M个饺子。现欲将M个饺子装入N个盘子中,试问共有多少种不同的装法?
假设盘子足够大,并且盘子里可以什么都不放。注意像2 5 0和5 0 2之类的属于同一种放法。

输入

两个整数M、N(1=< M,N <=100)以空格隔开。

输出

单独一行输出共有几种装法。

输入样例

7 3

输出样例

8

#include <iostream>
using namespace std;
 
int m,n;
 
int num[101][101];
 
int dp(int m, int n);
 
int main()
{
	cin>>m>>n;
	cout<<dp(m, n)<<endl;
	return 0;
}
 
int dp(int m, int n)
{
	if(num[m][n]>0)	//如果备忘录中已经有记录,直接返回
	{
		return num[m][n];
	}
	else if(n==1||m==0||m==1)	//如果还剩1个饺子、或只有0个盘子、或只有1个盘子
	{
		num[m][n]=1;			//此时都只有1种装法
		return num[m][n];
	}
	else if(n>m)	//如果盘子数目比饺子数多
	{
		num[m][n]=dp(m, m);	//那么多余的盘子其实怎么用都用不上的,跟去掉多余盘子的情况一样
		return num[m][n];
	}
	else	//重点!我们把每一种情况分为两种子情况
	{
		num[m][n-1]=dp(m, n-1);		//第一种子情况,有一个空盘子
		num[m-n][n]=dp(m-n, n);		//第二种子情况,没有空盘子,也就是每个盘子里都至少一个饺子
		num[m][n]=num[m][n-1]+num[m-n][n];	//这两种子情况的装法数加起来=当前情况的装法数
		return num[m][n];
	}
}
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 岁月 设计师:pinMode 返回首页