文章目录
前言
什么是GPU?
GPU(Graphic Process Units,图形处理器)。是一种单芯片处理器,主要用于管理和提高视频和图形的性能。GPU 加速计算是指同时利用图形处理器 (GPU) 和 CPU,加快应用程序的运行速度。
为什么要用GPU?
深度学习涉及很多向量或多矩阵运算,如矩阵相乘、矩阵相加、矩阵-向量乘法等。深层模型的算法,如BP,Auto-Encoder,CNN等,都可以写成矩阵运算的形式,无须写成循环运算。然而,在单核CPU上执行时,矩阵运算会被展开成循环的形式,本质上还是串行执行。GPU的众核体系结构包含几千个流处理器,可将矩阵运算并行化执行,大幅缩短计算时间。
如何使用GPU?
现在很多深度学习工具都支持GPU运算,使用时只要简单配置即可。Pytorch支持GPU,可以通过to(device)函数来将数据从内存中转移到GPU显存,如果有多个GPU还可以定位到哪个或哪些GPU。Pytorch一般把GPU作用于张量(Tensor)或模型