Pytorch模型中的GPU运算详解与实践

本文详细介绍了PyTorch中如何利用GPU进行深度学习模型的运算,包括CUDA函数接口、数据并行与模型并行处理的实现,以及多GPU训练策略。通过实例代码展示了数据并行处理的效果,并探讨了模型并行处理中的流水线输入加速方法。最后,给出了使用GPU的注意事项,提醒读者合理利用GPU资源。
摘要由CSDN通过智能技术生成

前言

什么是GPU
GPU(Graphic Process Units,图形处理器)。是一种单芯片处理器,主要用于管理和提高视频和图形的性能。GPU 加速计算是指同时利用图形处理器 (GPU) 和 CPU,加快应用程序的运行速度。
为什么要用GPU
深度学习涉及很多向量或多矩阵运算,如矩阵相乘、矩阵相加、矩阵-向量乘法等。深层模型的算法,如BP,Auto-Encoder,CNN等,都可以写成矩阵运算的形式,无须写成循环运算。然而,在单核CPU上执行时,矩阵运算会被展开成循环的形式,本质上还是串行执行。GPU的众核体系结构包含几千个流处理器,可将矩阵运算并行化执行,大幅缩短计算时间
如何使用GPU
现在很多深度学习工具都支持GPU运算,使用时只要简单配置即可。Pytorch支持GPU,可以通过to(device)函数来将数据从内存中转移到GPU显存,如果有多个GPU还可以定位到哪个或哪些GPU。Pytorch一般把GPU作用于张量(Tensor)或模型࿰

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wa1tzy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值