随机森林模型在机器学习算法中近年来受到xgb模型,lgb模型的冲击,但其仍然十分流行,主要是其结果的得分无论在验证集还是测试集上都经得起考验,这里我们用随机森林模型来预测二手车价格的变化。前面已经做了数据的EDA以及特征工程,包括数据集也在下面的链接中,点击获取了解
随机森林:
参数详解:
sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion='gini', max_depth=None,min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,max_features='auto', max_leaf_nodes=None, min_impurity_split=1e-07,bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0,warm_start=False, class_weight=None)
GradientBoostingRegressor
python中的scikit-learn包提供了很方便的GradientBoostingRegressor和GBDT的函数接口,可以很方便的调用函数就可以完成模型的训练和预测
GradientBoostingRegressor函数的参数如下:
skl