二手车价格预测-随机森林建模及调参

随机森林模型在机器学习算法中近年来受到xgb模型,lgb模型的冲击,但其仍然十分流行,主要是其结果的得分无论在验证集还是测试集上都经得起考验,这里我们用随机森林模型来预测二手车价格的变化。前面已经做了数据的EDA以及特征工程,包括数据集也在下面的链接中,点击获取了解

二手车交易价格数据分析EDA
二手车交易价格特征工程

随机森林:
参数详解:

sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion='gini', max_depth=None,min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,max_features='auto', max_leaf_nodes=None, min_impurity_split=1e-07,bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0,warm_start=False, class_weight=None)

GradientBoostingRegressor
python中的scikit-learn包提供了很方便的GradientBoostingRegressor和GBDT的函数接口,可以很方便的调用函数就可以完成模型的训练和预测

GradientBoostingRegressor函数的参数如下:

skl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值