目录
1 简单文本缩进案例
解决方案:将要缩进的文本定义在minipage环境下
勾股定理:
\begin{minipage}[t]{\linewidth}
直角三角形的直角边的平方求和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
\end{minipage}
使用效果:
2 算法表格中的缩进案例
\begin{table}
%\footnotesize
\renewcommand{\arraystretch}{1}
\begin{tabular}{p{\linewidth}}
\hline % 定义表头横线
输出:让矩阵中出现 n 个满足不同行不同列的 0。
\\\hline %表格前必须有明确的换行符号,即 \\ 是不能少的
Step1:\begin{minipage}[t]{300pt}
每行减去此行最小数
\end{minipage}\\
\quad Step1.1: % 前面的空格表示缩进的大小
\begin{minipage}[t]{300pt}
判断是否达到算法目标,如未达到算法目标,继续下一步。否则结束。
\end{minipage}\\ %此处换行符号不能省略
\quad\quad Step1.1.1:
\begin{minipage}[t]{320pt}
横纵交替,从行开始。找出所有还没有选中0的行(具体见步骤实例),在此行后面打钩; 把此行中有0的列全打钩。在打钩的列中,如果有零,又在有0的行打钩,如此交替,直到不能再打钩。
\end{minipage}\\ %此处换行符号不能省略
Step2: \begin{minipage}[t]{360pt}
在没有打钩的行和打钩的列上划线,会得到发现所有的0已经被划去,如果没有划去,请检查前面的步骤。此时剩下的所有元素中,找到最小值,就记为min吧。
在第4步画线的行减去min(此时原来的0变成-min),再在画线的列加上min(此时矩阵中没有了负数)。回到第 2 步。
\end{minipage}
\\
\hline % 定义表尾横线
\end{tabular}
\end{table}
效果如下:
这个代码有个弊端,就是文本的宽度手工定义可能导致不同段落的对齐不统一。
3 完整代码
\documentclass[UTF8,10pt]{ctexart}
\usepackage[paperheight=7cm]{geometry}
\begin{document}
勾股定理:
\begin{minipage}[t]{\linewidth}
直角三角形的直角边的平方求和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
\end{minipage}
\begin{table}
%\footnotesize
\renewcommand{\arraystretch}{1}
\begin{tabular}{p{\linewidth}}
\hline % 定义表头横线
输出:让矩阵中出现 n 个满足不同行不同列的 0。
\\\hline %表格前必须有明确的换行符号,即 \\ 是不能少的
Step1:\begin{minipage}[t]{300pt}
每行减去此行最小数
\end{minipage}\\
\quad Step1.1: % 前面的空格表示缩进的大小
\begin{minipage}[t]{300pt}
判断是否达到算法目标,如未达到算法目标,继续下一步。否则结束。
\end{minipage}\\ %此处换行符号不能省略
\quad\quad Step1.1.1:
\begin{minipage}[t]{320pt}
横纵交替,从行开始。找出所有还没有选中0的行(具体见步骤实例),在此行后面打钩; 把此行中有0的列全打钩。在打钩的列中,如果有零,又在有0的行打钩,如此交替,直到不能再打钩。
\end{minipage}\\ %此处换行符号不能省略
Step2: \begin{minipage}[t]{360pt}
在没有打钩的行和打钩的列上划线,会得到发现所有的0已经被划去,如果没有划去,请检查前面的步骤。此时剩下的所有元素中,找到最小值,就记为min吧。
在第4步画线的行减去min(此时原来的0变成-min),再在画线的列加上min(此时矩阵中没有了负数)。回到第 2 步。
\end{minipage}
\\
\hline % 定义表尾横线
\end{tabular}
\end{table}
\end{document}