1. 随机规划中的两类决策
在应对不确定性做出决策时,有的决策是在不确定性到达前做出的,有的则是在不确定性到达后做出的,也即here-and-now decision 和 wait-and-see decision. 以 location-transportation problem 为例,选择仓库地址是 here-and-now decision,在不确定性发生后,运输物资是 wait-and-see decision.
随机规划通过考虑一些随机场景,从而处理了不确定性;但是由于场景是随机生成的,所以随机规划只能得到 每个场景下的解。但是由于是随机生成一些场景,如果 实际实现的数据不是任何一个场景,那你就没办法直接提取solution了;此时,你就得做一个后优化,也就是基于实现的数据,去重新解一遍问题,获得一个解。
就拿我我之前写的那个随机规划的例子为例。
一开始就考虑今年是丰收年,平常年,灾害年的三种场景,我做一个一揽子的决策。
给出来丰收年下我应该怎么办,平常年下我应该怎么办,灾害年应该怎么办。
结果到了跟前 ,发现今年这个情况,既算不上丰收年,也不是平常的,也不是灾害,是一种介于丰收和平常之间的,【说丰收也不算丰收,说平常又比平常好一些】,那这种情况怎么办呢?你也没告诉我怎么操作呀?
此时,我就需要结合实现的数据,再解一遍模型整出来一个解。
本质原因是你的随机场景有可能是无限多的,但是你又没办法穷尽所有的场景,因为解不了那么大规模。所以很多时候可能需要后优化。
随机规划处理不确定性决策,分为here-and-now和wait-and-see两类。由于实际场景可能不在预设范围内,需要通过重调度来调整。考虑随机规划建模虽不及完美信息解优,但优于直接取均值。解决随机规划问题方法包括L形、对偶分解等,Benders分解和渐进对冲算法在其中起关键作用。
订阅专栏 解锁全文
1356

被折叠的 条评论
为什么被折叠?



