2022最新版-李宏毅机器学习深度学习课程-P22 卷积神经网络CNN

零、吴恩达专项课程引入

概念导入:边缘检测

假如有一张如下的图像,想让计算机搞清楚图像上有什么物体,有两种方法:检测图像的 垂直边缘 和 水平边缘

如下图所示,一个 6 * 6 的灰度图像,构造一个 3 * 3 的矩阵( 在CNN中通常称为 filter 过滤器),将 3 * 3 矩阵映射到该图像中,对这个 6 * 6 的灰度图像做 卷积运算,filter 跟图片对应位置的数值直接相乘,所有的都乘完以后再相加(内积),其中步长为1,以此类推,让过滤器在图像上逐步滑动,对整个图像进行卷积计算得到一幅 4 * 4 的图像。

这种方法可以得到图像的边缘信息的主要解释如下:

下图 0 表示图像深色区域,10为图像亮色区域,同样用一个 3 * 3 过滤器(其中,1代表亮色、0代表灰色、-1代表更深的深色),对图像进行卷积计算,得到右侧的矩阵,代表的图像信息为中间亮,两边暗(30为亮色,0为暗色),有明显深浅交叉对比,其中 亮色区域 就对应图像边缘。

 通过水平过滤器和垂直过滤器,可以实现图像水平和垂直边缘检测。还有其他类型的滤波器,在处理其他适合的任务目标方面有很好的效果。

 总结

在卷积神经网络中我们要学习的便是这些滤波器 filter 的参数(神经元的权值 weight ),卷积神经网络训练的目标就是去理解过滤器的参数

一、CNN 用于图像分类

基本步骤

  1. 把所有图片都先 Rescale 成大小一样
  2. 把每一个类别,表示成一个 One-Hot 的 Vector(Dimension 的长度就决定了模型可以辨识出多少不同种类的东西,)
  3. 将图像【输入】到模型中

如何将图片输入到模型中?⇒ 一般思路:展平→参数量过大

 彩色图像分为R G B 三层,展平后首尾相接

值代表着颜色的强度

 图像识别中不需要全连接的,参数太多了

基础卷积操作的缺点

参数过多,影响训练

如果输入图像的维度是 100 × 100 × 3,并且有 1000 个 Neuron,那第一层的 Weight 就有 1000 ×100 × 100 × 3( 3×10 的 7 次方),是一个非常巨大的参数数量。

虽然随著参数的增加,我们可以增加模型的弹性,我们可以增加它的能力,但是我们也增加了 Overfitting 的风险。

解法1:设定 “感受野”(Receptive Field)

原理:Neuron 也许根本就不需要把整张图片当作输入,它们只需要把图片的一小部分当作输入,就足以让它们检测某些特别关键的 Pattern 有没有出现。例如:在检测鸟嘴的任务中,仅需要获取下图的鸟嘴周围红框部分的图像信息即可检测出鸟嘴

观测1:通过判断多个小局部图像就能判断出图片标签

 若要设置 “感受野”,每个神经元只需要考察特定范围内的图像信息,将图像内容展平后输入到神经元中即可。

简化1特点

  • 感受野之间可以重叠
  • 一个感受野可以被多个神经元选择(共享权重)
  • 在设置感受野大小时,感受野可以“有大有小”(一般不做过大的kernal Size,常常设定为3*3)
  • 感受野可以只考虑某一些 Channel
  • 感受野可以是 “长方形” 的
  • 感受野不一定要 “相连”

感受野的一般设定

每一个感受域有多个神经元守备。kernel size 是宽高大小,stride 是移动的步长,padding 是边界区域扩充补值(一般是补 0)。在移动时,我们希望感受域彼此之间有重叠,防止有 pattern 在边缘交界处检测不到。图片中的每个地方都要有感受域,从头开始一步步滑动直到整个图像区域扫描完成

  1. 看所有的Channel

    一般在做影像辨识的时候会看全部的 Channel。那么,在描述一个 Receptive Field 的时候,无需说明其Channel数,只要讲它的高、宽⇒Kernel Size

    一般不做过大的kernal Size,常常设定为3 × 3

  2. 每个感受野会有不止一个神经元进行“守备”⇒输出通道数/卷积核数目

  3. 不同的感受野之间的关系⇒感受野的平移位移:stride【hyperparameter】

    一般希望感受野之间有重叠,避免交界处的pattern被忽略

  4. 感受野超出影响的范围⇒padding(补值)

    补0;补平均值;补边缘值……

  5. 垂直方向移动。

解法2:Parameter Sharing 权值共享(不同 Receptive Field 的 Neuron 共享参数)

原理:同样的 pattern,可能出现在图片的“不同位置”,不同感受域的神经元起同一个作用,侦测同样pattern的神经元做的工作是类似的 ⇒ 共享参数

例如下图所示,在检测鸟嘴的任务中,相当于一个滤波器扫描整张图片看有没有鸟嘴。

观测2:相同部分出现在不同区域

例如下图所示,虽然二者选择的 Receptive Field(感受野区域) 不一样,但是它们的参数一模一样。共享的其实就是参数 w,单个神经元的参数 w 是固定的,不会因为感受域不同而改变(当然 w 初始状态为未知,是需要学出来的)。所以同一个神经元针对不同的输入会有不同的输出

参数共享的一般设定

对每个感受野,都使用一组相同的神经元进行守备;这一组神经元被称作 filter(实质是同一套权重),对不同感受野使用的 filter 参数相同

卷积的优势

卷积层是“受限”(弹性变小)的FC:

  • FC可以通过“学习”决定要看到的“图片”的范围。加上“感受野”概念后,就只能看某一个范围。
  • FC可以自由决定守备不同“感受野”的各个神经元参数。加上“权值共享”概念后,守备不同感受野的同一个滤波器(filter)参数相同。

分析:

  • 一般而言,Model Bias 小,Model 的 Flexibility 很高的时候,比较容易 Overfitting,Fully Connected Layer可以做各式各样的事情,它可以有各式各样的变化,但是它可能没有办法在任何特定的任务上做好
  • CNN 的 Bias 比较大,它是专门為影像设计的,所以它在影像上仍然可以做得好。

二、另一角度切入

1.卷积层

卷积层中有若干个 filter,每个 filter 可以用来 “抓取” 图片中的某一种特征(特征 pattern 的大小,小于感受野大小)。filter 的参数即是神经元中的“权值(weight)”。

不同的  filter 逐步滑动扫描计算完成一张图的矩阵后,将会产生“新的图片”,其中 每个  filter  将会产生图片中的一个  channel  ⇒  这个结果即为 feature map(特征图)

filter的计算是“内积”:filter跟图片对应位置的数值直接相乘,所有的都乘完以后再相加。

例如下图中的例子,选择的 3 * 3 滤波器对正对角线的信息敏感,因此利用此滤波器对左图矩阵的左上角进行卷积计算后,得到的结果为 3

多层卷积

第一层的卷积结果,产生了一张3×3的feature map。继续卷积时,需要对64个channel都进行处理⇒filter的“高度”为64。

多层卷积⇒让“小”卷积核看到“大”pattern

在第二次卷积时,输入的原始图片信息增加了!

所以不是一直分区域处理的。随着层数的增加,考虑的范围会逐渐变大

这里,在第二层中考虑3×3的范围,在原图实际上考虑了5×5范围内的pattern。当卷积层越来越深时,即使只是3×3的filter,看到的范围也会越来越大。

卷积运算中也有Bias,描述时一般“忽略”

2.padding 和 卷积步长 (stride)

上述卷积运算过程的缺点是:

① 卷积操作会降低卷积图像的大小,可能会使图像大小越来越低

② 图像的边角元素只被一个滤波器进行计算并输出使用,因此这些图像边缘的像素在输出中采用较少,也意味着丢掉了很多图像边缘的信息

解决方法:

① 引入了 padding 操作(习惯上用0来填充),也就是在图像卷积操作之前,沿着图像边缘用0进行图像填充。对于3*3的过滤器,我们填充宽度为1时,就可以保证输出图像和输入图像一样大

② 引入 卷积步长 stride (过滤器在图像上滑动的距离)

加入 padding 和 stride 后卷积图像大小的通用计算公式为:

3. 补充知识点

①  参数大小: 例如有 10 个  3 * 3 的过滤器,每个过滤器都有 3 * 3 * 3 + 1 = 28 个参数(其中,3 * 3 * 3 为过滤器大小,1 是偏差系数

②  每经过一组 过滤器的计算后 ,输出图像的通道数 就是 过滤器的个数

③  1 x 1 卷积可以在保证高度宽度不变的情况下压缩信道数量并减少计算(降维)。

④ 迁移学习冻结前面所有的层,只把softmax层改动以适应自己的实现。

三、两种介绍的对比

分享的权重其实就是filter

 卷积 = 不同的filter扫过整个矩阵 = 不同的感受野公用权重参数

不用看整张图片范围:

  • 神经元角度:只要守备感受野
  • 滤波器角度:使用滤波器侦测模式pattern

图片不同位置的相同模式pattern:

  • 神经元角度:守备不同感受野的神经元共用参数
  • 滤波器角度:滤波器“扫过”整张图片

解法3:Pooling(池化)把图片变小,减小运算量

观测3:截出主要元素不会改变标签

引入池化层,池化的目的就是挑出重要的信息,然后缩小规模,减小运算量,提升运算速度。但是会造成精确度下降。

Pooling本身没有参数,所以它不是一个 Layer,没有要 Learn 的东西。行为类似于一个 Activation Function,(Sigmoid , ReLU ),是一个 Operator,它的行為都是固定好的。

分类:

  • Max pooling
  • Avg Pooling
  • ……

大小:可以调整

例如下图通过滤波器产生了4x4 的数字图,按照方框分成四组,每一组中选最大值做为该组代表,这就叫 max pooling(最大池化)

假如是将每一组的平均值作为该组代表,那么就叫做 mean pooling (平均池化)

 平均池化和最大池化唯一的不同是,它计算的是区域内的平均值而最大池化计算的是最大值。在日常应用使用最多的还是最大池化,除了一些较深的神经网络。

池化的超参数:步长 stride 、过滤器大小 filter size 、池化类型最大池化 / 平均池化

四、CNN全过程总结

一般:卷积与池化交替使用。pooling⇒可有可无(算力支撑)

Pooling对於 Performance,会带来一点伤害的。如果你运算资源足够支撑你不做 Pooling 的话,很多 Network 的架构的设计,往往今天就不做 Pooling,全 Convolution。

通过卷积层,池化层,拉直(flatten),全连接层,softmax 后,输出结果去分类。不过随着技术的提高,运算能力越来越强,可以不使用池化层来提高精确度(因为现在很多实验环境算力都够用,池化层的目的显得越来越没必要,所以在设计每一模块的时候都要考虑当前任务及实验环境,根据这些因素去设计最符合的网络)。

五、应用:Alpha Go

把棋盘看成19×19的图片,用48个channel来描述,代表48个状态

下围棋与“图像辨识”的共同点

  • 只看小范围
  • 模式在不同位置出现。

不同点:没有Pooling

由于棋子不能省略,用于围棋中不能加入池化层

更多应用:语音、自然语音处理。。。

To Learn More:CNN的缺陷——空间变换

⇒data augmentation/spacial transformer(下一讲)

CNN 并不能够处理影像放大缩小,或者是旋转的问题。所以在做影像辨识的时候,往往都要做 Data Augmentation,把你的训练数据截一小块出来放大缩小、把图片旋转,CNN 才会做到好的结果。

有一个架构叫 spacial Transformer Layer可以处理。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值