2022最新版-李宏毅机器学习深度学习课程-P29 RNN-2

 一、RNN网络结构

与时间有关的反向传播(每次不同) 

损失函数

实验其实不容易跑,因为他的损失函数曲线幅度很大

画出来差不多是这个样子。突然一下升高是因为从右到左碰到陡峭的地方梯度一下变大了,所以弹回去了。

原作者在训练时加上了小技巧——clipping:设置一个峰值,若超过则等于该峰值。

梯度大的原因:

  • 当W>1时,微小的变化会引起很大的变化;
  • 当w<1时,较大的变化带来的变化也很小。

RNN一些有用的变形

LSTM以及简化为双门的GRU

Clockwise RNN && SCRN

多对一

多长对多短

这里是最后删去重复的字符

改加上null符号后,可以实现一些叠词

CTC方法

多对多(无限制)

加上一个断的符号,可以及时终止

可以用在机器学习上

语法分析

自动编码器

可以提高传输效率和节约成本

可用于文本、音频

可以通过音频做一些相似性搜索

训练过程

向量可视化

实例:Chat-bot

基于注意力的模型

增加了能够存储的能力

拥有阅读理解能力/问答能力 

视觉问答

语音问答

模型架构

RNN vs Structured Learning

结合使用

与GAN做对比 

以后会开一门新课,专门讲结构化学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值