1.题目
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
Input
输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。
Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
Sample Input
6
5 1
4 1
6 1
7 2
7 2
8 3
0
Sample Output
4
2.思路
类似于经典数塔模型。
3.代码
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 1e5 + 10;
int dp[maxn][12]; ///dp[i][j]表示第i秒第j个位置有馅饼掉落
int MAX(int a, int b, int c)
{
int m1 = max(a, b);
m1 = max(m1, c);
return m1;
}
int main()
{
int n;
while (scanf("%d", &n) != EOF&&n)
{
int x, t, m = 0;
memset(dp, 0, sizeof(dp));///数组初始化
while (n--)
{
scanf("%d%d", &x, &t);
dp[t][x]++;
if (t > m) //记录最大的时间
{
m = t;
}
}
for (int i = m - 1; i >= 0; i--)
{
for (int j = 0; j <= 10; j++)
{
dp[i][j]= MAX(dp[i + 1][j + 1], dp[i + 1][j], dp[i + 1][j - 1]) + dp[i][j]; //状态转移方程
}
}
printf("%d\n", dp[0][5]);
}
return 0;
}