1.引用库:https://github.com/divamgupta/image-segmentation-keras
2.依赖项:tensorflow==1.14.1,keras2.0, keras-segmentation
3.main程序读取当前image文件夹下的图像,进行图像分割,然后将结果保存在output下
4.本程序已经将三种模型的输出结果分别保存,并重命名为方法的名字,比如:pspnet_50_ADE_20K,pspnet_101_cityscapes,pspnet_101_voc12
# main.py
import os
import glob
from keras_segmentation.pretrained import pspnet_50_ADE_20K , pspnet_101_cityscapes, pspnet_101_voc12
from keras_segmentation.pretrained import model_from_checkpoint_path
# model = pspnet_50_ADE_20K()
# model = pspnet_101_cityscapes()
model = pspnet_101_voc12()
imgs = glob.glob("image/*")
for img in imgs:
print(img)
saves= os.path.join("output","out_"+img[6:])
print(saves)
out = model.predict_segmentation(
inp=img,</