Dijkstra超级详细的解析

本文详细解析了Dijkstra算法的原理与实现过程,通过实例展示了如何求解单源最短路径问题。同时,讨论了算法在面对负权边时的局限性,以及通过堆优化将时间复杂度降低至nlogn,适用于稠密图的情况。
摘要由CSDN通过智能技术生成
想必大家一定会Floyd了吧,Floyd只要暴力的三个for就可以出来,代
码好背,也好理解,但缺点就是时间复杂度高是O(n^2^)__我太难了!!

于是今天就给大家带来一种时间复杂度是O(n²),的算法:Dijkstra(迪杰斯特拉)。
这个算法所求的是单源最短路,好比说你写好了Dijkstra的函数,那么只要输入点a的编号,就可算出图上每个点到这个点的距离。
我先上一组数据(这是无向图):

5 6 1 2 5 1 3 8 2 3 1 2 4 3 4 5 7 2 5 2

Dijkstra 算法是一种类似于贪心的算法,步骤如下:
1、当到一个时间点时,图上部分的点的最短距离已确定,部分点的最短距离未确定。
2、选一个所有未确定点中离源点最近的点,把他认为成最短距离。
3、再把这个点所有出边遍历一边,更新所有的点。
下面模拟一下:

我们以1为源点,来求所有点到一号点的最短路径。

先建立一个dis数组,dis[i]表示第i号点到源点(1号点)的估计值,你可能会问为什么是估计值,因为这个估计值会不断更新,更新到一定次数就变成答案了,这个一会再说。
然后我们在建立一个临接矩阵,叫做:map,map[i][j]=v表示从i到j这条边的权值是v。
dis初始值除了源点本身都是无穷大。源点本身都是0.
先从1号点开始。一号点,map[1][2]=5,一号点离2号点是5,比无穷大要小,所以dis[2]从无穷大变成了5。顺便,我们用minn记录距离1号点最短的点,留着以后会用。
dis[0,5,∞,∞,∞]。minn=2。
然后搜到3号点,map[1][3]=8,距离是8,比原来的dis[3]的∞小,于是dis[3]=8。但是8比dis[2]的5要大,所以minn不更新。
dis[0,5,8,∞,∞]
接着分别搜索4,5号点,发现map[1][4],map[1][5]都是∞,所以就不更新。
现在,dis数组所呈现的明显不是最终答案,因为我们才更新一遍,现在我们开始第二次更新,第二次更新以什么为开始呢?就是以上一次我们存下来的,minn,相当于把2当源点,求所有点到它的最短路,加上它到真正的源点(1号点)的距离,就是我们要求的最短路。
从2号点开始,搜索3号点,map[2][3]=1,原本dis[3]=8,发现dis[2]+map[2][3]=5+1=6<dis3所以更新dis[3]为6,minn=3
dis[0,5,6,∞,∞] minn=3.
然后搜索4号点,map[2][4]=3,原本dis[4]=∞,所以,dis[2]+map[2][4]=5+3=8<dis4所以更新dis[4]=8,因为map[2][4]=3,3>1,minn不更新。
dis[0,5,6,8,∞] minn=3.
接着搜索5号点,map[2][5]=2,5+2=7,7<∞,dis[5]=7minn不变。
dis[0,5,6,8,7]
二号点搜完,因为minn是3,继续搜索3号点。
三号点还是按照二号点的方法搜索,发现没有可以更新的,然后搜索四号。
四号搜5号点,发现8+7>5+2,所以依然不更新,然后跳出循环。
现在的估计值就全部为确定值了:
dis[0,5,6,8,7]
这就是每个点到源点一号点的距离,我们来看一下代码:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#define HYY_IS_A_PIG 54088
#define qwq int
using namespace std;
qwq map[110][110];//这就是map数组,存储图
qwq dis[10010];//dis数组,存储估计值
qwq book[10010];//book[i]代表这个点有没有被当做源点去搜索过,1为有,0为没有。这样就不会重复搜索了。
qwq n,m;
void dijkstra(int u){//主函数,参数是源点编号
    memset(dis,2147483647,sizeof(dis));
    int start=u;//先从源点搜索
    book[start]=1;//标记源点已经搜索过
    for(qwq i=1;i<=n;i++){
        dis[i]=min(dis[i],map[start][i]);//先更新一遍    
    }
    for(qwq i=1;i<=n-1;i++){
        qwq minn=9999999;
        for(qwq j=1;j<=n;j++)
            if(book[j]==0 && minn>dis[j]){
                minn=dis[j];
                start=j;//找到离源点最近的点,然后把编号记录下来,用于搜索。            }
        book[start]=1;        
        for(int j=1;j<=n;j++)
            dis[j]=min(dis[j],dis[start]+map[start][j]);//以新的点来更新dis。    
	}
}
int main()
{
    cin>>n>>m;
    memset(map,2147483647,sizeof(map));//int最大的数
    for(int i=1;i<=m;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        map[a][b]=c;
    }
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            if(i==j)
                map[i][j]=0;
    dijkstra(1);//以1为源点。
    for(int i=1;i<=n;i++)
        cout<<dis[i]<<" ";
}

这就是用邻接矩阵实现dijkstra,但是这个算法有一个坏处,就是出现负权边,这个算法就炸了。
这个算法的复杂度是O(n²),空间复杂度也是n平方,如果用邻接表来实现,最差情况,时间复杂度是O(n*m)似乎比n²要大一些,但是空间复杂度会从n平方变成m,少了很多,现在我呈上邻接表的代码。

#include <bits/stdc++.h>
using namespace std;
int value[10010],to[10010],next[10010];
int head[10010],total;
int book[10010];
int dis[10010];
int n,m;
void adl(int a,int b,int c)
{
    total++;
    to[total]=b;
    value[total]=c;
    next[total]=head[a];
    head[a]=total;
}void dijkstra(int u)
{
    memset(dis,88,sizeof(dis));
    memset(book,0,sizeof(book));
    dis[u]=0;
    for(int i=1;i<=n;i++)
    {
        int start=-1;
        for(int j=1;j<=n;j++)
            if(book[j]==0 && (dis[start]>dis[j] || start==-1))
                start=j;
        book[start]=1;
        for(int e=head[start];e;e=next[e])
            dis[to[e]]=min(dis[to[e]],dis[start]+value[e]);
    }
}int main()
{
    cin>>n>>m;
    for(int i=1;i<=m;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        adl(a,b,c);
     } 
     dijkstra(1);
     for(int i=1;i<=n;i++)
         cout<<dis[i]<<" ";
}

当年那么畏惧的Dijkstra,现在已经是信手拈来。
那个暑假,因为Djkstra名字的朗朗上口,讲自己名字改为了Dijkstra,但是逐渐因为SPFA(关于SPFA:它死了)的可处理负权边,也将Dijkstra,淡忘。
如今突然想起,加入了堆优化,有人说:一道题如果边权没有负数,那么一定是在卡SPFA。这时候就用到了堆优化的Dijkstra。
一年前提到,朴素的Dijkstra时间复杂度是n2,被SPFA的m*常数吊打,但是,经过**堆优化**,Dijkstra的时间复杂度能达到nlogn,如果这个图特别稠密的话,也就是m特别大(比如完全图就是n2),那么nlogn是要小于m的,这就用到了Dijkstra
首先堆优化怎么优化?观察上面的代码,每次循环中都再嵌套一个循环求dis值最小的点。这里,我们可以用一个优先队列,每当搜索到一个新点,扔到优先队列里面,这样每次就取队首的绝对是最优值。这样可以省去for循环。

#include <bits/stdc++.h>
#include <queue>//保险
#define qwq int
#define in(a) a=read()
#define REP(i,k,n) for(long long i=k;i<=n;i++)
#define MAXN 10010
#define HYY_IS_A_PIG long long
using namespace std;
typedef pair<HYY_IS_A_PIG,HYY_IS_A_PIG> P;
inline HYY_IS_A_PIG read(){
    HYY_IS_A_PIG x=0,t=1,c;
    while(!isdigit(c=getchar())) if(c=='-') t=-1;
    while(isdigit(c)) x=x*10+c-'0',c=getchar();
    return x*t;
}
HYY_IS_A_PIG n,m,s;
HYY_IS_A_PIG total=0,head[MAXN],nxt[MAXN<<10],to[MAXN<<10],val[MAXN<<10];
HYY_IS_A_PIG dis[MAXN],vis[MAXN];
priority_queue <P, vector<P>,greater<P> > Q;//优先队列优化
inline void adl(HYY_IS_A_PIG a,HYY_IS_A_PIG b,HYY_IS_A_PIG c){
    total++;
    to[total]=b;
    val[total]=c;
    nxt[total]=head[a];
    head[a]=total;
    return ;
}
inline void Dijkstra(){
    REP(i,1,n)  dis[i]=2147483647;
    dis[s]=0;
    Q.push(P(0,s));
    while(!Q.empty()){
        HYY_IS_A_PIG u=Q.top().second;//取出dis最小的点
        Q.pop();//弹出
        if(vis[u])  continue;
        vis[u]=1;
        for(HYY_IS_A_PIG e=head[u];e;e=nxt[e])
            if(dis[to[e]]>dis[u]+val[e]){
                dis[to[e]]=dis[u]+val[e];
                Q.push(P(dis[to[e]],to[e]));//插入            }
    }
    return ;
}
qwq main(){
    in(n),in(m),in(s);
    HYY_IS_A_PIG a,b,c;
    REP(i,1,m)  in(a),in(b),in(c),adl(a,b,c);
    Dijkstra();
    REP(i,1,n)  printf("%lld ",dis[i]);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值