- 加性噪声:
- 指当噪声对语音的干扰表现为两者信号在时域进行相加;
- 实际环境中背景噪声可以看成加性噪声,如风扇的声音、汽车引擎声、周围人说话声等;
- 麦克风等声音采集设备在正常工作的范围内,可以近似看成一个线性系统,即产生信号的幅度和声强呈正比;
- 从能量角度看背景噪声和语音的声强是叠加关系,两者对麦克风共同作用形成的带噪语音信号等于各信号之和。
- 乘性噪声:
- 指噪声和语音在频域是相乘的关系,在时域和语音则是卷积关系,因此也称为卷积噪声;
- 在实际应用中乘性噪声主要体现在语音采集、麦克风传输中电话信道和无线信道的频率选择特性;
- 乘性噪声可以通过某种变换如同态滤波,转变为加性噪声。
- 白噪声:指功率谱密度在整个频域内均匀分布的噪声,所有频率具有相同能量的随机噪声称为白噪声。
- 粉红噪声:
- 定义为在与频带中心频率成正比的带宽(如倍频程带宽)内具有相等功率的噪声或振动;
- 粉红噪声的频率分量功率主要集中在中低频段。
- 工厂噪声:一般是指工业设备及其在运转时产生的噪声。
- 根据噪声统计特性随时间变化的程度不同,可将噪声分为周期噪声、脉冲噪声、缓变噪声和平稳噪声
- 周期噪声:
- 发动机产生的干扰、市电干扰都是周期噪声;
- 其特点在于频域上有很多离散的线谱;
- 可以用梳状滤波器加以滤除,用数字信号处理的方法来处理;
- 实际环境中产生的周期性噪声并非简单的只含线性谱分量,而是由许多窄带谱组成;
- 该类型噪声往往是时变的,并与语音信号频谱重叠,往往需要采用自适应滤波的方式才可能自动识别和区分噪声。
- 脉冲噪声:
- 打火、放电都会产生脉冲噪声;
- 脉冲噪声表现为在时域波形中出现的窄脉冲。
- 缓变噪声:缓变噪声是在实际场合中经常遇到的噪声,这种噪声的统计特性会随着时间缓慢变化;人群噪声是典型的缓变噪声。
- 平稳噪声:平稳噪声是指噪声的统计特性不随时间发生变化;由于噪声源的复杂性,在日常生活中遇到的噪声大多是非平稳的,但对平稳噪声的研究是噪声分析的基础。
- 周期噪声:
- 按照噪声覆盖频率范围可将噪声分为全频带噪声(也称为宽带噪声和窄带噪声)
- 全频带噪声:
- 覆盖了信号全部频率带的噪声称为全频带噪声或宽带噪声;
- 来源:热噪声、气流(如风)、呼吸噪声、量化噪声以及各种随机噪声源;
- 对于平稳的全频带噪声可认为是高斯白噪声;对于不具有白色频谱的噪声,可以先进行白化处理,然后转化为白噪声。
- 窄带噪声:
- 只覆盖信号的部分频率带的噪声称为窄带噪声,又称为带选噪声;
- “口哨”噪声就是一种窄带噪声。
- 全频带噪声:
- 知识补充:
- 梳状滤波器,常见的梳状滤波算法:
- 周期平滑滤波:
- 对信号的一个周期内(或几个周期内)的数据进行累加平均。则周期干扰信号会被平滑衰减。
- 缺点:毕竟滤除了谐波干扰,同时对信号中的高频分量也进行了衰减。
- 延迟叠加滤波器:
- 把信号与其延迟累加
- 对于奇谐对称的交流信号有很好的滤除作用。
- 周期平滑滤波:
- 白化:
- 零均值化:使数据的均值为0,求出当前数据的平均值,然后用原数据减去均值得到的新的数据就是一组均值为零的数据
- 白化变化:将已知协方差矩阵的随机向量变成一系列新的变量组成的向量使得新的向量协方差矩阵为一个单位矩阵。对应着白化定义中方差=1的情况
- 进行白化的原因:
- 输入数据中相邻采样点之间的数据具有很强的相关性,训练网络时会有很大的数据冗余。
- 对输入数据进行白化处理,就能降低数据之间的相关度,不同数据所蕴含的信息之间的重复性就会降低,网络的训练效率就会提高。
- 量化噪声:
- 如果输入模拟信号的幅度是完全随机的,则量化误差可以看做是在[-1/2*q,1/2*q](q为最低有效位(LSB)可表示的最小单位)范围内的均匀分布,实际应用中大多近似如此。
- 量化噪声即是该量化误差引入的噪声。
- 热噪声:也称为白噪声,是由导体中电子的热震动引起的,它存在于所有电子器件和传输介质中。它是温度变化的结果,但不受频率变化的影响。热噪声是在所有频谱中以相同的形态分布,它是不能够消除的,由此对通信系统性能构成了上限。
- 梳状滤波器,常见的梳状滤波算法:
语音噪声---学习笔记
于 2022-09-20 20:49:17 首次发布