语音噪声---学习笔记

  1. 加性噪声:
    1. 指当噪声对语音的干扰表现为两者信号在时域进行相加
    2. 实际环境中背景噪声可以看成加性噪声,如风扇的声音、汽车引擎声、周围人说话声等;
    3. 麦克风等声音采集设备在正常工作的范围内,可以近似看成一个线性系统,即产生信号的幅度和声强呈正比;
    4. 从能量角度看背景噪声和语音的声强是叠加关系,两者对麦克风共同作用形成的带噪语音信号等于各信号之和。
  2. 乘性噪声:
    1. 指噪声和语音在频域是相乘的关系,在时域和语音则是卷积关系,因此也称为卷积噪声
    2. 在实际应用中乘性噪声主要体现在语音采集、麦克风传输中电话信道和无线信道的频率选择特性
    3. 乘性噪声可以通过某种变换如同态滤波,转变为加性噪声
  3. 白噪声:功率谱密度在整个频域内均匀分布的噪声,所有频率具有相同能量的随机噪声称为白噪声。
  4. 粉红噪声:
    1. 定义为在与频带中心频率成正比的带宽(如倍频程带宽)内具有相等功率的噪声或振动;
    2. 粉红噪声的频率分量功率主要集中在中低频段
  5. 工厂噪声:一般是指工业设备及其在运转时产生的噪声。
  6. 根据噪声统计特性随时间变化的程度不同,可将噪声分为周期噪声、脉冲噪声、缓变噪声和平稳噪声
    1. 周期噪声
      1. 发动机产生的干扰、市电干扰都是周期噪声;
      2. 其特点在于频域上有很多离散的线谱
      3. 可以用梳状滤波器加以滤除,用数字信号处理的方法来处理;
      4. 实际环境中产生的周期性噪声并非简单的只含线性谱分量,而是由许多窄带谱组成;
      5. 该类型噪声往往是时变的,并与语音信号频谱重叠,往往需要采用自适应滤波的方式才可能自动识别和区分噪声
    2. 脉冲噪声
      1. 打火、放电都会产生脉冲噪声;
      2. 脉冲噪声表现为在时域波形中出现的窄脉冲。
    3. 缓变噪声:缓变噪声是在实际场合中经常遇到的噪声,这种噪声的统计特性会随着时间缓慢变化人群噪声是典型的缓变噪声。
    4. 平稳噪声:平稳噪声是指噪声的统计特性不随时间发生变化;由于噪声源的复杂性,在日常生活中遇到的噪声大多是非平稳的,但对平稳噪声的研究是噪声分析的基础。
  7. 按照噪声覆盖频率范围可将噪声分为全频带噪声(也称为宽带噪声和窄带噪声)
    1. 全频带噪声
      1. 覆盖了信号全部频率带的噪声称为全频带噪声或宽带噪声;
      2. 来源:热噪声、气流(如风)、呼吸噪声、量化噪声以及各种随机噪声源;
      3. 对于平稳的全频带噪声可认为是高斯白噪声;对于不具有白色频谱的噪声,可以先进行白化处理,然后转化为白噪声。
    2. 窄带噪声
      1. 只覆盖信号的部分频率带的噪声称为窄带噪声,又称为带选噪声;
      2. “口哨”噪声就是一种窄带噪声。
  8. 知识补充:
    1. 梳状滤波器,常见的梳状滤波算法:
      1. 周期平滑滤波:
        1. 对信号的一个周期内(或几个周期内)的数据进行累加平均。则周期干扰信号会被平滑衰减。
        2. 缺点:毕竟滤除了谐波干扰,同时对信号中的高频分量也进行了衰减。
      2. 延迟叠加滤波器:
        1. 把信号与其延迟累加
        2. 对于奇谐对称的交流信号有很好的滤除作用。
    2. 白化:
      1. 零均值化:使数据的均值为0,求出当前数据的平均值,然后用原数据减去均值得到的新的数据就是一组均值为零的数据
      2. 白化变化:将已知协方差矩阵的随机向量变成一系列新的变量组成的向量使得新的向量协方差矩阵为一个单位矩阵。对应着白化定义中方差=1的情况
      3. 进行白化的原因:
        1. 输入数据中相邻采样点之间的数据具有很强的相关性,训练网络时会有很大的数据冗余。
        2. 对输入数据进行白化处理,就能降低数据之间的相关度,不同数据所蕴含的信息之间的重复性就会降低,网络的训练效率就会提高。
    3. 量化噪声:
      1. 如果输入模拟信号的幅度是完全随机的,则量化误差可以看做是在[-1/2*q,1/2*q](q为最低有效位(LSB)可表示的最小单位)范围内的均匀分布,实际应用中大多近似如此。
      2. 量化噪声即是该量化误差引入的噪声。
    4. 热噪声:也称为白噪声,是由导体电子的热震动引起的,它存在于所有电子器件传输介质中。它是温度变化的结果,但不受频率变化的影响。热噪声是在所有频谱中以相同的形态分布,它是不能够消除的,由此对通信系统性能构成了上限。
matlab 语音除噪 音信号处理是语音学与数字信号处理技术相结合的交叉学科,课题在这里不讨论语音学,而是将语音当做一种特殊的信号,即一种“复杂向量”来看待。也就是说,课题更多的还是体现了数字信号处理技术[1]。数字信号处理技术主要研究离散线性时不变系统,数字滤波频谱分析是它的的两个主要分支。数字滤波(Digital filter),即在形形色色的信号中提取所需信号,抑制不必要的干扰。数字滤波器可以在时域实现也可以在频域实现,主要有两种类型;无限长冲击数字滤波器(IIR)有限长冲击数字滤波器(FIR)。频谱分析(SA,Spectrum Analysis),对各种信号进行频域上的加工处理,其核心内容是快速傅里叶变换(FFT),分析的结果是一频率为坐标的各种物理量的谱线曲线[2]。从课题的中心来看,课题“基于MATLAB的有噪声语音信号处理”是希望将数字信号处理技术应用于某一实际领域,这里就是指对语音及加噪处理。作为存储于计算机中的语音信号,其本身就是离散化了的向量,我们只需将这些离散的量提取出来,就可以对其进行处理了。这一过程的实现,用到了处理数字信号的强有力工具MATLAB[3]。MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言交互式环境,主要包括MATLABSimulink两大部分。它提供了功能齐全的滤波器设计,与信号处理交互式图形用户界面(Interactive graphical user interface),主要包括FDAToolSPATool两种交互式工具,其中FDATool主要用于数字滤波器设计与分析,而SPATool不仅可以设计分析滤波器,而且可以对信号进行时域与频域的分析[4]。通过MATLAB里几个命令函数的调用,很轻易的在实际语音与数字信号的理论之间搭了一座桥。课题的特色在于它将语音信号看作一个向量,于是就把语音数字化了。那么,就可以完全利用数字信号处理的知识来解决语音及加噪处理问题。我们可以像给一般信号做频谱分析一样,来对语音信号做频谱分析,也可以较容易的用数字滤波器来对语音进行滤波处理。[5]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值