cornell grasp data 康奈尔大学抓取数据集 百度云

国内下载较慢,康奈尔大学抓取数据集分享,给有用的人。科研之路道阻且长,互行方便。

康奈尔大学抓取数据集是基于深度学习方法实现机器人自主抓取的必备数据集, 直接推动了机器人自主抓取的发展。目前先进的基于视觉和机器人抓取方法都是在该数据集上训练过。该数据集共十组,每组100个物体,共计1000个物体,不仅包含物体的图像,还包含物体的抓取位姿。


 

下载链接:

链接:https://pan.baidu.com/s/1lgPBUT4NPKYXNbzKgBIzCQ 
提取码:1n7s

<think>好的,用户现在问的是Cornell数据集的获取方式。首先,我需要确认用户指的是哪个Cornell数据集。因为康奈尔大学可能有多个不同领域的数据集,比如计算机视觉、机器人抓取、自然语言处理等等。根据之前的对话历史,用户之前询问的是关于图像处理用于抓取模型的数据集准备,所以很可能他们现在指的是机器人抓取相关的Cornell Grasping Dataset。 接下来,我需要回忆一下这个数据集的具体信息。Cornell Grasping Dataset是用于机器人抓取检测的经典数据集,包含多个物体的图像和抓取标注。这个数据集抓取检测的研究中被广泛使用,所以用户可能是在进行机器人抓取相关的项目或研究,需要这个数据集来训练或测试模型。 用户的需求可能是想下载这个数据集,但不知道在哪里找。因此,我需要提供具体的获取途径。首先,我应该给出官方网站的链接,但需要确认链接是否仍然有效。康奈尔大学有时会更改网页结构,所以可能需要检查最新的链接是否存在。如果官方网站不可用,可能需要提供替代的下载方式,比如GitHub上的镜像仓库或者学术资源平台如Kaggle、Papers With Code等。 另外,用户可能对数据集的组成和使用方法不太清楚,可能需要简要介绍数据集的结构和内容,比如包含多少张图像、标注的格式是什么,以及如何正确加载和使用这些数据。此外,用户可能关心数据集的许可信息,是否可以用于商业用途,是否需要引用相关论文,这也是需要提到的部分。 还有可能用户在使用数据集时遇到问题,比如下载链接失效,或者数据格式不熟悉,这时候应该建议他们查阅相关的论文或文档,或者在社区如GitHub上寻求帮助。同时,提醒用户注意数据集的版本和可能的更新,确保他们获取的是正确的版本。 最后,总结获取途径,确保用户能够一步步找到并下载数据集,同时了解其基本信息和用法。可能需要分点列出不同的获取方式,从官方到镜像,再到第三方平台,确保用户有多种选择。同时,提供相关的引用信息,帮助用户正确引用数据集,这对学术研究尤为重要。</think>以下是关于**Cornell Grasping Dataset**(机器人抓取检测数据集)的获取方式及关键信息: --- ### **1. 数据集简介** - **用途**:训练机器人抓取姿态检测模型(检测物体可抓取的位置和角度)。 - **内容**: - 包含 **885 张 RGB 图像**,涵盖240个日常物体(如杯子、玩具等)。 - 每张图像标注了多个**抓取矩形框**(矩形中心位置、角度和尺寸)。 - **特点**:标注数据以 **MAT 文件**格式存储(需MATLAB或Python解析)。 --- ### **2. 官方获取渠道** #### **(1) 康奈尔大学官网(原链接可能失效)** - 原数据集发布于康奈尔大学机器人实验室,但官网链接可能已关闭。 - **备用存档链接**: - 通过论文作者页面获取: [arXiv论文《Learning to Grasp Novel Objects Using Vision》](https://arxiv.org/abs/2008.07939)(数据集链接可能在论文的“Data Availability”部分) - 学术镜像站点(如Internet Archive): [Cornell Grasping Dataset存档](https://web.archive.org/web/*/http://pr.cs.cornell.edu/grasping/rect_data/data.php)(尝试查找历史快照) #### **(2) GitHub 镜像仓库** - 研究人员常将数据集托管在GitHub,搜索关键词:`Cornell Grasping Dataset GitHub` - 示例仓库: [https://github.com/tensorflow/models/tree/master/research/deeplab](https://github.com/tensorflow/models/tree/master/research/deeplab) (部分仓库可能包含数据加载代码) - 直接下载链接(需验证有效性): ```text http://pr.cs.cornell.edu/grasping/rect_data/data.tar.gz ``` #### **(3) 第三方平台** - **Kaggle**: 搜索 [Cornell Grasping Dataset](https://www.kaggle.com/datasets),用户可能已上传备份。 - **Papers With Code**: 访问 [PapersWithCode数据集页面](https://paperswithcode.com/dataset/cornell-grasping),可能提供下载链接。 --- ### **3. 数据集使用示例(Python解析MAT文件)** ```python import scipy.io as sio import numpy as np # 加载MAT文件 data = sio.loadmat('cornell_grasping_dataset.mat') # 提取图像和标注 images = data['images'] # 图像数据(需转换格式) grasp_rectangles = data['rectangles'] # 抓取框参数(位置、角度、长宽) # 可视化抓取框(示例) import matplotlib.pyplot as plt img_idx = 0 plt.imshow(images[img_idx]) for rect in grasp_rectangles[img_idx]: x, y, theta, width, height = rect # 绘制矩形框(需坐标转换) ... ``` --- ### **4. 替代数据集推荐** 若Cornell数据集获取困难,可尝试以下替代: - **JAQUARD Dataset**:更大规模的抓取检测数据集(>5万张图像) 下载链接:[https://www.jaquard-dataset.net/](https://www.jaquard-dataset.net/) - **Amazon Picking Challenge Dataset**:包含多物体堆叠场景 链接:[https://rll.berkeley.edu/amazon_picking_challenge/](https://rll.berkeley.edu/amazon_picking_challenge/) --- ### **注意事项** - **数据预处理**:Cornell数据集图像分辨率较低(640x480),需调整尺寸以适应现代模型。 - **引用要求**:使用该数据集需引用原始论文: ```text @article{lenz2015deep, title={Deep learning for detecting robotic grasps}, author={Lenz, Ian and Lee, Honglak and Saxena, Ashutosh}, journal={The International Journal of Robotics Research}, year={2015} } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值