前言
这是我《OpenCV:从零到一》专栏的第八篇博客,想看跟多请戳这。
本文概要
- 线性滤波器
- 方框滤波
- 均值滤波
- 高斯滤波
- 非线性滤波器
- 中值滤波
- 双边滤波
案例代码
大概内容:各种滤波 。
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
int main(int argc, char** argv) {
Mat src = imread("D:\\86186\\Documents\\opencv\\lena.jpg");
if (!src.data) {
printf("could not load image...\n");
return -1;
}
imshow("src", src);
------------线性滤波-------------
Mat box;
boxFilter(src,box, src.depth(),Size(11, 11));//方框滤波
imshow("boxblur", box);
Mat blurDst;
blur(src, blurDst, Size(11, 11));//均值滤波
imshow("blur", blurDst);
Mat gblur;
GaussianBlur(src, gblur, Size(11, 11), 11, 11);//高斯模糊
imshow("gaussian blur", gblur);
------------非线性滤波-------------
//medianBlur(src, dst, 3);//中值滤波
Mat bilateralBlur;
bilateralFilter(src, bilateralBlur, 15, 100, 5);//双边滤波
namedWindow("bilateralBlur", WINDOW_AUTOSIZE);
imshow("bilateralBlur", bilateralBlur);
Mat filter2dRes;
Mat kernel = (Mat_<int>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);//自定义核
filter2D(src, filter2dRes, -1, kernel, Point(-1, -1), 0);//自定义线性滤波
imshow("filter2D", filter2dRes);
waitKey(0);
return 0;
}
运行效果:
其他图就展示不展现了,只展现双边滤波的。
双边滤波真的很慢,下图的100和100的 以及150和150的。
解析及注意事项
- 就像之前讲的那样,参数列表虽然长,但是样式千篇一律,原图,输出图,核的大小,锚点,边界类型。有些需要填深度,有些还可以填delta,一般参数默认值或者说原图像值可以用-1来表示。高斯模糊需要输入两个西格玛值,分别是两个方向的标准差。如果sigmaY==0则它的值和sigmaX一样,若两个都为零则按照Ksize来计算。
- 双边滤波器可以很好的减少噪声同时保持边缘相当尖锐,然而他比大多数滤波器慢。(双边滤波里面有高斯滤波)为了省事可以将两个西格玛值设为相同的,当他们小的时候看起来没有效果,当他们大的时候有很好的效果,使图像看起来想卡通(试了试150的运行花了两分钟(前面几个加起来都是秒开的),超级慢,效果和100的差不多,和其他相比效果是真的好)
全注释代码
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using std::cout;
int main(int argc, char** argv) {
Mat src = imread("D:\\86186\\Documents\\opencv\\lena.jpg");
if (!src.data) {
printf("could not load image...\n");
return -1;
}
imshow("src", src);
------------线性滤波-------------
Mat box;
boxFilter(src,box, src.depth(),Size(7, 7));//方框滤波
imshow("boxblur", box);
/*
InputArray src,
OutputArray dst,
int ddepth,
Size ksize,
Point anchor = Point(-1,-1),
bool normalize = true,
int borderType = BORDER_DEFAULT
*/
Mat blurDst;
blur(src, blurDst, Size(7, 7));//均值滤波
imshow("blur", blurDst);
/*
InputArray src,
OutputArray dst,
Size ksize,
Point anchor = Point(-1,-1),
int borderType = BORDER_DEFAULT
*/
Mat gblur;
GaussianBlur(src, gblur, Size(7, 7), 10, 10);//高斯模糊
imshow("gaussian blur", gblur);
/*
InputArray src,
OutputArray dst,
Size ksize,
double sigmaX,
double sigmaY = 0,
int borderType = BORDER_DEFAULT
*/
------------非线性滤波-------------
Mat med;
medianBlur(src, med, 3);//中值滤波
imshow("medianBlur", med);
double t = (double)getTickCount();
Mat bilateralBlur;
bilateralFilter(src, bilateralBlur, 50, 50, 5);//双边滤波
namedWindow("bilateralBlur", WINDOW_AUTOSIZE);
imshow("bilateralBlur", bilateralBlur);
t = ((double)getTickCount() - t) / getTickFrequency();
cout << t;
/*
InputArray src,
OutputArray dst,
int d,
double sigmaColor,
double sigmaSpace,
int borderType = BORDER_DEFAULT
bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp.
双边滤波器可以很好的减少噪声同时保持边缘相当尖锐。
However, it is very slow compared to most filters. 然而他比大多数滤波器慢
Sigma values: For simplicity, you can set the 2 sigma values to be the same.
为了省事可以将两个西格玛值设为相同的
If they are small (< 10), the filter will not have much effect, 当他们小的时候看起来没有效果
whereas if they are large (> 150), they will have a very strong effect, making the image look "cartoonish".
当他们大的时候有很好的效果,使图像看起来想卡通(试了试150的花了两分钟,超级慢,效果和100的差不多,效果是真的好)
*/
Mat filter2dRes;
Mat kernel = (Mat_<int>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);//自定义核
filter2D(src, filter2dRes, -1, kernel, Point(-1, -1), 0);//自定义线性滤波
imshow("filter2D", filter2dRes);
/*
InputArray src,
OutputArray dst,
int ddepth,
InputArray kernel,
Point anchor = Point(-1,-1),
double delta = 0,
int borderType = BORDER_DEFAULT
*/
waitKey(0);
return 0;
}