【OpenCV:从零到一】08:模糊图像(滤波器)

前言
这是我《OpenCV:从零到一》专栏的第八篇博客,想看跟多请戳
本文概要

  • 线性滤波器
    • 方框滤波
    • 均值滤波
    • 高斯滤波
  • 非线性滤波器
    • 中值滤波
    • 双边滤波

案例代码
大概内容:各种滤波 。

#include <opencv2/opencv.hpp> 
#include <iostream> 
using namespace cv;

int main(int argc, char** argv) {
	Mat src = imread("D:\\86186\\Documents\\opencv\\lena.jpg");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}
	imshow("src", src);
	------------线性滤波-------------
	Mat box;
	boxFilter(src,box, src.depth(),Size(11, 11));//方框滤波
	imshow("boxblur", box);

	Mat blurDst;
	blur(src, blurDst, Size(11, 11));//均值滤波
	imshow("blur", blurDst);

	Mat gblur;
	GaussianBlur(src, gblur, Size(11, 11), 11, 11);//高斯模糊
	imshow("gaussian blur", gblur);
	
	
	------------非线性滤波-------------

	//medianBlur(src, dst, 3);//中值滤波
	Mat bilateralBlur;
	bilateralFilter(src, bilateralBlur, 15, 100, 5);//双边滤波
	namedWindow("bilateralBlur", WINDOW_AUTOSIZE);
	imshow("bilateralBlur", bilateralBlur);

	Mat filter2dRes;
	Mat kernel = (Mat_<int>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);//自定义核
	filter2D(src, filter2dRes, -1, kernel, Point(-1, -1), 0);//自定义线性滤波
	imshow("filter2D", filter2dRes);

	waitKey(0);
	return 0;
}

运行效果:
其他图就展示不展现了,只展现双边滤波的。
双边滤波真的很慢,下图的100和100的 以及150和150的。

解析及注意事项

  • 就像之前讲的那样,参数列表虽然长,但是样式千篇一律,原图,输出图,核的大小,锚点,边界类型。有些需要填深度,有些还可以填delta,一般参数默认值或者说原图像值可以用-1来表示。高斯模糊需要输入两个西格玛值,分别是两个方向的标准差。如果sigmaY==0则它的值和sigmaX一样,若两个都为零则按照Ksize来计算。
  • 双边滤波器可以很好的减少噪声同时保持边缘相当尖锐,然而他比大多数滤波器慢。(双边滤波里面有高斯滤波)为了省事可以将两个西格玛值设为相同的,当他们小的时候看起来没有效果,当他们大的时候有很好的效果,使图像看起来想卡通(试了试150的运行花了两分钟(前面几个加起来都是秒开的),超级慢,效果和100的差不多,和其他相比效果是真的好)

全注释代码

#include <opencv2/opencv.hpp> 
#include <iostream> 
using namespace cv;
using std::cout;
int main(int argc, char** argv) {
	Mat src = imread("D:\\86186\\Documents\\opencv\\lena.jpg");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}
	imshow("src", src);
	------------线性滤波-------------
	Mat box;
	boxFilter(src,box, src.depth(),Size(7, 7));//方框滤波
	imshow("boxblur", box);
	/*
	InputArray 	src,
	OutputArray 	dst,
	int 	ddepth,
	Size 	ksize,
	Point 	anchor = Point(-1,-1),
	bool 	normalize = true,
	int 	borderType = BORDER_DEFAULT 
	*/

	Mat blurDst;
	blur(src, blurDst, Size(7, 7));//均值滤波
	imshow("blur", blurDst);
	/*
	InputArray 	src,
	OutputArray 	dst,
	Size 	ksize,
	Point 	anchor = Point(-1,-1),
	int 	borderType = BORDER_DEFAULT
	*/

	Mat gblur;
	GaussianBlur(src, gblur, Size(7, 7), 10, 10);//高斯模糊
	imshow("gaussian blur", gblur);
	/*
	InputArray 	src,
	OutputArray 	dst,
	Size 	ksize,
	double 	sigmaX,
	double 	sigmaY = 0,
	int 	borderType = BORDER_DEFAULT 
	*/
	
	
	------------非线性滤波-------------
	Mat med;
	medianBlur(src, med, 3);//中值滤波
	imshow("medianBlur", med);

	double t = (double)getTickCount();
	Mat bilateralBlur;
	bilateralFilter(src, bilateralBlur, 50, 50, 5);//双边滤波
	namedWindow("bilateralBlur", WINDOW_AUTOSIZE);
	imshow("bilateralBlur", bilateralBlur);
	t = ((double)getTickCount() - t) / getTickFrequency();
	cout << t;
	/*
	InputArray 	src,
	OutputArray dst,
	int d,
	double sigmaColor,
	double sigmaSpace,
	int borderType = BORDER_DEFAULT 	
	bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp.
	双边滤波器可以很好的减少噪声同时保持边缘相当尖锐。
	However, it is very slow compared to most filters. 然而他比大多数滤波器慢
	Sigma values: For simplicity, you can set the 2 sigma values to be the same. 
	为了省事可以将两个西格玛值设为相同的
	If they are small (< 10), the filter will not have much effect, 当他们小的时候看起来没有效果
	whereas if they are large (> 150), they will have a very strong effect, making the image look "cartoonish".
	当他们大的时候有很好的效果,使图像看起来想卡通(试了试150的花了两分钟,超级慢,效果和100的差不多,效果是真的好)
	*/



	Mat filter2dRes;
	Mat kernel = (Mat_<int>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);//自定义核
	filter2D(src, filter2dRes, -1, kernel, Point(-1, -1), 0);//自定义线性滤波
	imshow("filter2D", filter2dRes);
	/*
	InputArray 	src,
	OutputArray 	dst,
	int 	ddepth,
	InputArray 	kernel,
	Point 	anchor = Point(-1,-1),
	double 	delta = 0,
	int 	borderType = BORDER_DEFAULT 
	*/

	waitKey(0);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值