算法笔记14_贪心

鱼塘钓鱼问题

约翰有h(1≤h≤16)个小时的时间,在该地区有n(2≤n≤25)个湖,这些湖刚好分布在一条路线上,该路线是单向的。约翰从湖1出发,他可以在任一个湖结束钓鱼。但他只能从一个湖到达另一个与之相邻的湖,而且不必每个湖都停留。

  • 假设湖i(i=1~n—1),以5分钟为单位,从湖i到湖i+1需要的时间用ti(0<ti≤192)表示。例如t3=4,是指从湖3到湖4需要花20分钟时间。

已知在最初5分钟,湖i预计钓到鱼的数量为fi(fi≥0)。以后每隔5分钟,预计钓到鱼的数量将以常数di(di≥0)递减。如果某个时段预计钓到鱼的数量小于或等于di,那么在下一时段将钓不到鱼。为简单起见,假设没有其它的钓鱼者影响约翰的钓鱼数量。
编写程序,帮助约翰制定钓鱼旅行的计划,以便尽可能多的钓到鱼。

  • 输入
    对每组测试例,第一行是n,接下来一行是h。下面一行是n个整数fi(1≤i≤n),然后是一行n个整数di(1≤i≤n),最后一行是n—1个整数ti(1≤i≤n—1)。
144
44
2 //n10 15 20 1710 15 50 30
1 //h0 3 4 30 3 4 3
10 1 //fi1 2 31 2 3
2 5 //di0
2 //ti
  • 输出
    对每个测试例,输出在每个湖上花费的时间,这是约翰要实现钓到最多的鱼的计划(必须使整个计划在同一行输出)。
    接下来一行是钓到的鱼的数量:
    如果存在很多方案,尽可能选择在湖1钓鱼所耗费的时间,即使有些时段没有钓到鱼;如果还是无法区分,那就尽可能选择在湖2钓鱼所耗费的时间,以此类推。
    输出样例

45, 5
Number of fish expected: 31
240, 0, 0, 0
Number of fish expected: 480
115, 10, 50, 35
Number of fish expected: 724

数据结构

每个湖预计钓到鱼的数量,定义为数组:

#define NUM 30 
int f[NUM];

每个湖预计钓到鱼的数量的递减值,定义为数组:

int d[NUM];

相邻湖之间的旅行时间,定义为数组:

int t[NUM];

钓鱼计划,定义为数组:

int plan[NUM];

湖的个数n,用于钓鱼的时间h,尽可能多的钓鱼数量best。

搜索

在任意一个湖结束钓鱼时的最优钓鱼计划

首先把用于钓鱼的时间h,由小时转换为以5分钟为单位的时间:h=h×60/5;
这样把钓5分钟鱼的时间称为钓一次鱼。由于约翰从湖1出发,可以在任一个湖结束钓鱼,要得到最优解,就需要进行搜索。

设花费在路程上的时间为:
int time= 0;
假设约翰在第m个湖结束钓鱼,因为路程是单向的,所以路程上的时间:
在这里插入图片描述
于是展开搜索:

for(i=1;i<=n&&h-time;++i){
	greedy(i,h-time);
	time+=t[i];
}

void greedy(int pos, int time);
约翰在第pos个湖结束钓鱼,用于钓鱼的时间是time(不含路程),即钓鱼time次。

贪心策略

采用贪心策略,每次选择鱼最多的湖钓一次鱼
对于每个湖来说,由于在任何时候鱼的数目只和约翰在该湖里钓鱼的次数有关,和钓鱼的总次数无关,所以这个策略是最优的。一共可以钓鱼time次,每次在n个湖中选择鱼最多的一个湖钓鱼。
采用贪心算法构造约翰的钓鱼计划。

  • 可以认为约翰能从一个湖“瞬间转移”到另一个湖,即在任意一个时刻都可以从湖1到湖pos中任选一个钓一次鱼。
//从湖1起到湖pos止,花费时间time(不含路程)的钓鱼计划
void greedy(int pos, int time)
{ 
  if (time <= 0) return;      //时间已经用完
  int i, j;
  int fish[MAXN];
  int p[MAXN];
  int t = 0; 
  for (i = 0; i < pos; ++i) 
    fish[i] = f[i]; 
  memset(p, 0, sizeof(p)); 
  //在时间time内,选择鱼最多的湖钓鱼;如果鱼都没有了,就把时间放在湖1上
for (i = 0; i < time; ++i)
{ 
  int max = 0;		//鱼最多的湖中,鱼的数量
  int id = -1;     //鱼最多的湖的编号
  //查找鱼最多的湖中,鱼的数量和湖的编号
  for (j = 0; j < pos; ++j)
    if (fish[j] > max){ 
      max = fish[j]; 
      id = j; 
    } 
  if (id != -1)      //找到了,进行钓鱼处理
  {
    ++p[id]; 
    fish[id] -= d[id]; 
    t += max; 
  }
  //没有找到(从湖1起到湖pos全部钓完了),就把时间放在湖1上
  else ++p[0]; 
} 
//处理最优方案
if (t > best)
{ 
  best = t;         //最优值
  memset(plan, 0, sizeof(plan));
  for (i = 0; i < pos; ++i)  //最优解
    plan[i] = p[i]; 
}

输出钓鱼计划时,再把5乘回去,就变成实际的钓鱼时间(分钟):

for (i=0; i<n-1; ++i) 
	printf("%d,  ", plan[i] * 5);
printf("%d\n", plan[n-1] * 5); 
printf("Number of fish expected: %d\n", best);

慕课

最优前缀码及哈夫曼算法

二元前缀码

用0-1字符串作为代码表示字符,要求任何字符的代码都不能作为其它字符代码的前缀
解码的歧义,例如字符串 0100001

解码1:01,00,001d,b,a
解码2:010,00,01c,b,d

前缀码的二叉树表示

前缀码:
{00000, 00001, 0001, 001, 01,100,101,11}
构造树:
0 -左子树
1-右子树
码对应一片树叶
最大位数为树深

在这里插入图片描述

平均传输位数

在这里插入图片描述
在这里插入图片描述
B=[(5+5)5+104+(15+10+10)*3+(25+20)*2]/100=2.85

问题:给定字符集C={x1,x2,…,xn}和每个字符的频率f(xi),i=1,2,…,n. 求关于C的一个最优前缀码(平均传输位数最小).

哈夫曼树算法伪码

算法 Huffman(C )
输入:C ={x1, x2,…, xn}, f(xi), i=1,2,…,n.
输出:Q/ /队列

  1. n <- |C|
  2. Q <- C //频率递增队列Q
  3. for i <- 1 to n-1 do
  4. z <- Allocate-Node() //生成结点z
  5. z.left <- Q中最小元 //最小作z左儿子
  6. z.right <- Q中最小元 //最小作z右儿子
  7. f(z) <- f(x)+f(y)
  8. Insert(Q,z) //将z插入Q
  9. return

最优前缀码性质:引理1

引理1: C是字符集,∀c∈C, f©为频率, x,y∈C, f(x), f(y)频率最小, 那么存在最优二元前缀码使得 x, y 码字等长且仅在最后一位不同.

在这里插入图片描述

最优前缀码性质:引理2

引理2 设T是二元前缀码的二叉树,∀x, y∈T,x,y是树叶兄弟,z是x,y的父亲,令T’=T-{x,y},且令z的频率:f(z)=f(x)+f(y)。
T’是对应二元前缀码C’=(C-{x,y})∪{z}的二叉树,那么B(T)=B(T’)+f(x)+f (y)。
在这里插入图片描述

哈夫曼算法的正确性证明

两个引理

引理1: C是字符集,∀c∈C, f©为频率, x,y∈C, f(x), f(y)频率最小, 那么存在最优二元前缀码使得 x, y 码字等长且仅在最后一位不同.

引理2 设T是二元前缀码的二叉树,∀x, y∈T,x,y是树叶兄弟,z是x,y的父亲,令T’=T-{x,y},且令z的频率:f(z)=f(x)+f(y)。
T’是对应二元前缀码C’=(C-{x,y})∪{z}的二叉树,那么B(T)=B(T’)+f(x)+f (y)。

算法正确性证明思路

  • 定理:Huffman 算法对任意规模为n(n>=2)的字符集C都得到关于C的最优前缀码的二叉树.
  • 归纳基础:证明:对于n=2的字符集, Huffman算法得到最优前缀码.
  • 归纳步骤: 证明:假设Huffman算法对于规模为 k 的字符集都得到最优前缀码,那么对于规模为k+1的字符集也得到最优前缀码.

归纳基础

n=2,字符集,C={x1, x2},对任何代码的字符至少都需要1位二进制数字. Huffman算法得到的代码是 0 和 1,是最优前缀码.

归纳步骤

假设Huffman算法对于规模为 k 的字 符集都得到最优前缀码. 考虑规模为 k+1的字符集C = {x1, x2, …, xk+1},其中 x1, x2∈C是频率最小的两个字符.
在这里插入图片描述
根据归纳假设,算法得到一棵关于字符集 C’,频率f(z)和f(xi) (i =3,4, …,k+1) 的最优前缀码的二叉树T’.
把 x1, x2作为 z的儿子附到 T’上,得到树T,那么T是关于C=(C’-{z})∪{x1, x2}的最优前缀码的二叉树.
在这里插入图片描述
如若不然, 存在更优树 T*, B(T*)<B(T),且由引理1,其树叶兄弟是 x1和 x2.去掉 T中 x1和 x2,得到T’. 根据引理2:B(T*’)=B(T*)-( f(x1)+f(x2))< B(T)-( f(x1)+f(x2))= B(T’ )与 T’是一棵关于C’的最优前缀码的二叉树矛盾.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值