cvae-gan tensorflow实现

论文依据:Cvae-gan: fine-grained image generation through asymmetric training。
代码来源:github
关于论文讲解分析,csdn已经有不少例子,在此不做详细解释。
该模型呢,可以应用于,如图像修复、超分辨率和数据增强,以训练更好的人脸识别模型等领域。
该程序,按实验目的分为3部分,即训练网络,测试网络以及分类网络。又有三个基础支持网络,即基本模型,VAE网络和判别网络。分工明确,环环相扣。
首先是基本模型
model_utils.py

import tensorflow as tf
import tensorlayer as tl
import numpy as np


def _channel_shuffle(x, n_group):
    n, h, w, c = x.shape.as_list()
    x_reshaped = tf.reshape(x, [-1, h, w, n_group, c // n_group])
    x_transposed = tf.transpose(x_reshaped, [0, 1, 2, 4, 3])
    output = tf.reshape(x_transposed, [-1, h, w, c])
    return output


def _group_norm_and_channel_shuffle(x, is_train, G=32, epsilon=1e-12, use_shuffle=False, name='_group_norm'):
    with tf.variable_scope(name):
        N, H, W, C = x.get_shape().as_list()
        if N == None:
            N = -1
        G = min(G, C)
        x = tf.reshape(x, [N, G, H, W, C // G])
        mean, var = tf.nn.moments(x, [2, 3, 4], keep_dims=True)
        x = (x - mean) / tf.sqrt(var + epsilon)
        # shuffle channel
        if use_shuffle:
            x = tf.transpose(x, [0, 4, 2, 3, 1])
        # per channel gamma and beta
        gamma = tf.get_variable('gamma', [C], initializer=tf.constant_initializer(1.0), trainable=is_train)
        beta = tf.get_variable('beta', [C], initializer=tf.constant_initializer(0.0), trainable=is_train)
        gamma = tf.reshape(gamma, [1, 1, 1, C])
        beta = tf.reshape(beta, [1, 1, 1, C])

        output = tf.reshape(x, [N, H, W, C]) * gamma + beta
    return output


def _switch_norm(x, name='_switch_norm') :
    with tf.variable_scope(name) :
        ch = x.shape[-1]
        eps = 1e-5

        batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], keep_dims=True)
        ins_mean, ins_var = tf.nn.moments(x, [1, 2], keep_dims=True)
        layer_mean, layer_var = tf.nn.moments(x, [1, 2, 3], keep_dims=True)

        gamma = tf.get_variable("gamma", [ch], initializer=tf.constant_initializer(1.0))
        beta = tf.get_variable("beta", [ch], initializer=tf.constant_initializer(0.0))

        mean_weight = tf.nn.softmax(tf.get_variable("mean_weight", [3], initializer=tf.constant_initializer(1.0)))
        var_wegiht = tf.nn.softmax(tf.get_variable("var_weight", [3], initializer=tf.constant_initializer(1.0)))

        mean = mean_weight[0] * batch_mean + mean_weight[1] * ins_mean + mean_weight[2] * layer_mean
        var = var_wegiht[0] * batch_var + var_wegiht[1] * ins_var + var_wegiht[2] * layer_var

        x = (x - mean) / (tf.sqrt(var + eps))
        x = x * gamma + beta

        return x


def _add_coord(x):
    batch_size = tf.shape(x)[0]
    height, width = x.shape.as_list()[1:3]

    # 加1是为了使坐标值为[0,1],不加1则是[0,1)
    y_coord = tf.range(0, height, dtype=tf.float32)
    y_coord = tf.reshape(y_coord, [1, -1, 1, 1])  # b,h,w,c
    y_coord = tf.tile(y_coord, [batch_size, 1, width, 1]) / (height-1)

    x_coord = tf.range(0, width, dtype=tf.float32)
    x_coord = tf.reshape(x_coord, [1, 1, -1, 1])  # b,h,w,c
    x_coord = tf.tile(x_coord, [batch_size, height, 1, 1]) / (width-1)

    o = tf.concat([x, y_coord, x_coord], 3)
    return o


def coord_layer(net):
    return tl.layers.LambdaLayer(net, _add_coord, name='coord_layer')


def switchnorm_layer(net, act, name):
    net = tl.layers.LambdaLayer(net, _switch_norm, name=name)
    if act is not None:
        net = tl.layers.LambdaLayer(net, act, name=name)
    return net


def groupnorm_layer(net, is_train, G, use_shuffle, act, name):
    net = tl.layers.LambdaLayer(net, _group_norm_and_channel_shuffle, {
   'is_train':is_train, 'G':G, 'use_shuffle':use_shuffle, 'name':name}, name=name)
    if act is not None:
        net = tl.layers.LambdaLayer(net, act, name=name)
    return net


def upsampling_layer(net, shortpoint):
    hw = shortpoint.outputs.shape.as_list()[1:3]
    net_upsamping = tl.layers.UpSampling2dLayer(net, hw, is_scale=False)
    net = tl.layers.ConcatLayer([net_upsamping, shortpoint], -1)
    return net


def upsampling_layer2(net, shortpoint, name):
    with tf.variable_scope(name):
        hw = shortpoint.outputs.shape.as_list()[1:3]
        dim1 = net.outputs.shape.as_list()[3]
        dim2 = shortpoint.outputs.shape.as_list()[3]

        net = conv2d(net, dim1//2, 1, 1, None, 'SAME', True, True, False, 'up1')
        shortpoint = conv2d(shortpoint, dim2//2, 1, 1, None, 'SAME', True, True, False, 'up2')

        net = tl.layers.UpSampling2dLayer(net, hw, is_scale
  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: cvae-gan-zoos-pytorch-beginner这个词汇代表一个初学者使用PyTorch框架进行CVAE-GAN(生成式对抗网络变分自编码器)的编码器,这个网络可以在数据集中进行分析学习,并将数据转换为可以生成新数据的潜在向量空间。该网络不需要通过监督学习标签分类,而是直接使用数据的分布。这个编码器的目的是从潜在空间中生成新数据。此模型可以用于不同的任务,例如图像生成和语音生成。 为了实现这一目标,这一模型采用了CVAE-GAN网络结构,其中CVAE(条件变分自编码器)被用来建立机器学习模型的潜在空间,GAN(生成式对抗网络)作为一个反馈网络,以实现生成数据的目的。最后,这个模型需要使用PyTorch框架进行编程实现,并对数据集进行分析和处理,以便输入到模型中进行训练。这个编码器是一个比较复杂的模型,因此,初学者需要掌握深度学习知识和PyTorch框架的相关知识,并有一定的编程经验,才能实现这一任务。 总的来说,CVAE-GAN是一个在生成数据方面取得了重大成就的深度学习模型,可以应用于各种领域,例如图像、语音和自然语言处理等。然而,对于初学者来说,这是一个相对复杂的任务,需要掌握相关知识和技能,才能成功实现这一模型。 ### 回答2: cvae-gan-zoos-pytorch-beginner是一些机器学习领域的技术工具,使用深度学习方法来实现动物园场景的生成。这些技术包括:生成式对抗网络(GAN)、变分自编码器(CVAE)和pytorch。GAN是一种基于对抗机制的深度学习网络,它可以训练出生成逼真的场景图像;CVAE也是一种深度学习网络,它可以从潜在空间中提取出高质量的场景特征,并生成与原图像相似的图像;pytorch是一个深度学习框架,它可以支持这些技术的开发和实现。 在这个动物园场景生成的过程中,通过GANCVAE的组合使用可以从多个角度来创建逼真而多样化的动物园场景。此外,pytorch提供了很多工具和函数来简化代码编写和管理数据,使得训练过程更加容易和高效。对于初学者们来说,这些技术和框架提供了一个良好的起点,可以探索深度学习和图像处理领域的基础理论和实践方法,有助于了解如何使用技术来生成更好的图像结果。 ### 回答3: CVaE-GAN-ZOOS-PyTorch-Beginner是一种结合了条件变分自编码器(CVaE)、生成对抗网络(GAN)和零样本学习(Zero-Shot Learning)的深度学习框架。它使用PyTorch深度学习库,适合初学者学习和使用。 CVaE-GAN-ZOOS-PyTorch-Beginner的主要目的是提供一个通用的模型结构,以实现Zero-Shot Learning任务。在这种任务中,模型要从未见过的类别中推断标签。CVaE-GAN-ZOOS-PyTorch-Beginner框架旨在使模型能够从已知类别中学习无监督的表示,并从中推断未知类别的标签。 CVaE-GAN-ZOOS-PyTorch-Beginner的结构由两个关键部分组成:生成器和判别器。生成器使用条件变分自编码器生成潜在特征,并进一步生成样本。判别器使用生成的样本和真实样本区分它们是否相似。这样,生成器被迫学习产生真实的样本,而判别器则被迫学习区分真实的样本和虚假的样本。 总的来说,CVaE-GAN-ZOOS-PyTorch-Beginner框架是一个强大的工具,可以用于解决Zero-Shot Learning问题。它是一个易于使用的框架,适合初学者学习和使用。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值