除法求值
题目描述
示例
官解思路:并查集
并查集简介:
· 并查集(不相交集合)用于处理动态连通性问题,最典型的应用是求解「最小生成树」的Kruskal算法;
· 并查集支持**「查询(find) 」、「合并 (union) 」** 两个操作;
· 并查集只回答两个结点是不是在一个连通分量中(也就是所谓的连通性问题),并不回答路径问题;
· 如果一个问题具有传递性质,可以考虑用并查集;
· 并查集最常见的一种设计思想是:把同在一个连通分量中的结点组织成一个树形结构(代表元法);
· 并查集使用**「路径压缩」与「按秩合并」**解决树的高度增加带来的「查询」性能消耗问题;
1、构建有向图
2、「统一变量」与「路径压缩」的关系
为了避免并查集所表示的树形结构高度过高,影响查询性能。在查询一个结点 a 的根结点同时,把结点 a 到根结点的沿途所有结点的父亲结点都指向根结点。
路径压缩前后,并查集所表示的两棵树形结构等价,路径压缩以后的树的高度为 2,查询性能最好。
并查集的「查询」操作会执行「路径压缩」,一边查询一边修改结点指向是并查集的特色。
class Solution {
public double[] calcEquation(List<List<String>> equations, double[] values, List<List<String>> queries) {
int equationsSzie = equations.size();
UnionFind UnionFind = new UnionFind(2 * equationsSzie);
//第1步,预处理,将变量的值与id进行映射,使得并查集的底层使用数组实现,方便编码
Map<String, Integer> hashMap = new HashMap<>(2 * equationsSzie);
int id = 0;
for(int i = 0; i < equationsSzie; i++) {
List<String> equation = equations.get(i);
String var1 = equation.get(0);
String var2 = equation.get(1);
if(!hashMap.containsKey(var1)) {
hashMap.put(var1, id);
id++;
}
if(!hashMap.containsKey(var2)) {
hashMap.put(var2, id);
id++;
}
UnionFind.union(hashMap.get(var1), hashMap.get(var2), values[i]);
}
//第2步,做查询
int queriesSize = queries.size();
double[] res = new double[queriesSize];
for(int i = 0; i < queriesSize; i++) {
String var1 = queries.get(i).get(0);
String var2 = queries.get(i).get(1);
Integer id1 = hashMap.get(var1);
Integer id2 = hashMap.get(var2);
if(id1 == null || id2 == null) res[i] = -1.0d;
else res[i] = UnionFind.isConnected(id1, id2);
}
return res;
}
private class UnionFind {
private int[] parent;
//指向父节点的权值
private double[] weight;
public UnionFind(int n) {
this.parent = new int[n];
this.weight = new double[n];
for(int i = 0; i < n; i++) {
parent[i] = i;
weight[i] = 1.0d;
}
}
public void union(int x, int y, double value) {
int rootX = find(x);
int rootY = find(y);
if(rootX == rootY) return;
parent[rootX] = rootY;
weight[rootX] = weight[y] * value / weight[x];
}
//路径压缩
public int find(int x) {
if(x != parent[x]) {
int origin = parent[x];
parent[x] = find(parent[x]);
weight[x] *= weight[origin];
}
return parent[x];
}
public double isConnected(int x, int y) {
int rootX = find(x);
int rootY = find(y);
if(rootX == rootY) return weight[x] / weight[y];
else return -1.0d;
}
}
}