因子分析在SPSS中的应用

数学建模 专栏收录该内容
4 篇文章 0 订阅

因子分析

1、 方法概述

因子分析就是在尽可能不损失信息或者少损失信息的情况下,将多个变量减少为少数几个因子的方法。这几个因子可以高度概括大量数据中的信息,这样,既减少了变量个数,又同样能再现变量之间的内在联系。

2、 基本原理
在这里插入图片描述在这里插入图片描述
3、 几个统计量的意义
在这里插入图片描述
4、 因子分析的注意事项

1) 样本量不能太小;一般要求样本量至少是变量数的5倍以上,甚至10倍以上,样本总量也不能太少,要求应该在100以上。
2) 各变量应该具有相关性;在SPSS中,可以通过计算相关系数矩阵来判断,如果相关系数矩阵中的大部分系数均小于0.3,即各个变量间大多为弱相关,那么原则上这些变量是不适合进行因子分析的。也可以用Bartlett球形检验来判断,如果相关阵是单位阵,则各变量独立,因子分析无效。
3) KMO检验。KMO检验用于检验变量间的偏相关性,取值在0-1之间。KMO统计量越接近于1,变量间的偏相关性越强,因子分析的效果越好。实际分析中,KMO统计量在0.7以上时,效果比较好;而当KMO统计量在0.5以下时,此时不适合应用因子分析,应考虑重新设计变量结构或者采用其他统计分析方法。
4) 因子分析中各公共因子应该具有实际意义。否则就应该重新设计要测量的原始变量。

5、 因子分析基本步骤

1) 确认待分析的原变量是否适合作因子分析
它要求原始变量之间应存在较强的相关关系。进行因子分析前,通常可以采取计算相关系数矩阵、巴特利特球度检验和KMO检验等方法来检验候选数据是否适合采用因子分析。
2) 构造因子变量
将原有变量综合成少数几个因子是因子分析的核心内容。它的关键是根据样本数据求解因子载荷阵。因子载荷阵的求解方法有基于主成分模型的主成分分析法、基于因子分析模型的主轴因子法、极大似然法等。
3) 利用旋转方法使因子变量更具有可解释性
将原有变量综合为少数几个因子后,如果因子的实际含义不清,则不利于后续分析。为解决这个问题,可通过因子旋转的方式使一个变量只在尽可能少的因子上有比较高的载荷,这样使提取出的因子具有更好的解释性。
4) 计算因子变量得分
实际中,当因子确定以后,便可计算各因子在每个样本上的具体数值,这些数值称为因子得分。于是,在以后的分析中就可以利用因子得分对样本进行分类或评价等研究,进而实现了降维和简化问题的目标。
在这里插入图片描述
6、 因子模型的特点

1) 模型不受量纲的影响。
2) 因子载荷不是唯一的,通过因子轴的旋转,可以得到新的因子载荷阵,使意义更加明显。

得到初始因子模型后,因子载荷矩阵往往比较复杂,不利于因子的解释。可以通过因子轴的旋转,使得载荷矩阵中各元素值向0-1分化,同时保持同一行各元素平方和不变。通过因子旋转,各变量在因子上载荷更加明显,因此也有利于对各因子给出更加明显合理的解释。

7、[碎石图]:它显示了按特征值大小排列的因子序号。它有助于确定保留多少个因子。典型的碎石图会有一个明显的拐点,在该点之前是与大因子连接的陡峭的折线,之后是与小因子相连的缓坡折线。


下一篇:数学建模之聚类分析
在这里插入图片描述

  • 1
    点赞
  • 0
    评论
  • 5
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 黑客帝国 设计师:白松林 返回首页

打赏作者

盖盖的博客

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值