CodeForces - 1407D Discrete Centrifugal Jumps(单调栈+dp)

题意:给定你n个大楼和他们的高度h[i],当满足以下三种条件中的任意一中时,你可以完成跳跃操作。问最少需要跳几次到达第n个楼
在这里插入图片描述
2 =< n <= 3e5,肯定是要找到O(n)的解法,我们考虑dp的状态转移是否可行,在第一种情况下,可以直接转移dp[i] = min(dp[i],dp[i-1]+1)。
再看第二种状态,我们想要得到这样一个区间,其中的数都比两侧的大,我们考虑用一个单调栈递增的栈来维护,假如当前遍历到的位置now,对于栈内每一个大于等于now的位置pre,now这个位置的状态都可以有pre来完成转移。因为单单调递增的栈,假如当前的pre大于等于now,那么pre到now这个开区间内的所有位置肯定都是满足大于now的。然后在维护栈的过程中,我们还要看一下是出现了h[pre] == h[now]的情况,因为假如没有出现,那么最后剩下的栈顶元素依然可以再更新一次当前的now的答案,但是如果出现的话,那么区间内的值全部大于;两侧的条件就不满足了,这是不能再次进行更新。
第三种状态和第二种同理,把栈变成单调递减栈,其余操作一致即可。
最后的到dp[n]即为答案。
代码:

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
const int MAXN = 3e5+7;
#define inf 0x3f3f3f3f

int h[MAXN],dp[MAXN];
stack<int>sta_de;//递减栈
stack<int>sta_in;//递增栈

int main()
{
	int n;
	scanf("%d",&n);
	for(int i = 1;i <= n;i ++){
		scanf("%d",&h[i]);
		dp[i] = inf;
	}
	dp[0] = -1;
	sta_de.push(1);
	sta_in.push(1);
	for(int i = 1;i <= n;i ++){
		dp[i] = min(dp[i-1]+1,dp[i]);
		int f1 = 0,f2 = 0;
		while(sta_in.size() && h[sta_in.top()] >= h[i]){
			if(h[sta_in.top()] == h[i])
				f1 = 1;
			dp[i] = min(dp[i],dp[sta_in.top()] + 1);
			sta_in.pop();	
		}
		if(!f1 && sta_in.size())//如果没有出现相等的位置的话,剩下的栈顶也是可以更新 当前i的答案的 别忘了这个可能的更新位置
			dp[i] = min(dp[i],dp[sta_in.top()] + 1);
		//非严格单调递增的栈,因为到等于的时候 中间的部分才会都大于当前走到的 h[i]
		while(sta_de.size() && h[sta_de.top()] <= h[i]){
			if(h[sta_de.top()] == h[i])
				f2 = 1;
			dp[i] = min(dp[i],dp[sta_de.top()] + 1);
			sta_de.pop();
		}
		if(!f2 && sta_de.size())
			dp[i] = min(dp[i],dp[sta_de.top()] + 1);
		
		sta_in.push(i);
		sta_de.push(i);
	}
	printf("%d\n",dp[n]);
	return 0;
}
CodeForces - 616D是一个关于找到一个序列中最长的第k好子段的起始位置和结束位置的问题。给定一个长度为n的序列和一个整数k,需要找到一个子段,该子段中不超过k个不同的数字。题目要求输出这个序列最长的第k好子段的起始位置和终止位置。 解决这个问题的方法有两种。第一种方法是使用尺取算法,通过维护一个滑动窗口来记录\[l,r\]中不同数的个数。每次如果这个数小于k,就将r向右移动一位;如果已经大于k,则将l向右移动一位,直到个数不大于k。每次更新完r之后,判断r-l+1是否比已有答案更优来更新答案。这种方法的时间复杂度为O(n)。 第二种方法是使用枚举r和双指针的方法。通过维护一个最小的l,满足\[l,r\]最多只有k种数。使用一个map来判断数的种类。遍历序列,如果当前数字在map中不存在,则将种类数sum加一;如果sum大于k,则将l向右移动一位,直到sum不大于k。每次更新完r之后,判断i-l+1是否大于等于y-x+1来更新答案。这种方法的时间复杂度为O(n)。 以上是两种解决CodeForces - 616D问题的方法。具体的代码实现可以参考引用\[1\]和引用\[2\]中的代码。 #### 引用[.reference_title] - *1* [CodeForces 616 D. Longest k-Good Segment(尺取)](https://blog.csdn.net/V5ZSQ/article/details/50750827)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Codeforces616 D. Longest k-Good Segment(双指针+map)](https://blog.csdn.net/weixin_44178736/article/details/114328999)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值