本题考查的是平方数的应用。
已知一个两位数,它的十位数字是a,个位数字是b。
则这个两位数可以表示为:10a+b。
当把个位和十位数字交换后,新的两位数就是10b+a。
那么,这两个数相加就是:
(10a+b)+(10b+a)=11a+11b=11(a+b)
由于a和b都是个位数,所以它们的和a+b最大是9+9=18。
那么,11(a+b)一定是11的倍数,且小于11×19=209。
接下来,要找出小于209的完全平方数,它们有:12=1,22=4,32=9,42=16,52=25,…,132=169,14^2=196。
在这些数中,只有121是11的倍数(因为121÷11=11)。
所以,这个和是121。
此时,a+b=11。
由于a和b都是个位数,且它们的和是11,那么可能的组合有(2,9),(3,8),(4,7),(5,6),(6,5),(7,4),(8,3),(9,2)。
以(2,9)为例,原数是29,交换后的数是92,它们的和是29+92=121,满足条件。
综上,这个和是121。
把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和 是多少?
最新推荐文章于 2025-05-08 11:15:37 发布