题目:P3397 地毯
题目描述
在 n × n n\times n n×n 的格子上有 m m m 个地毯。
给出这些地毯的信息,问每个点被多少个地毯覆盖。
输入格式
第一行,两个正整数 n , m n,m n,m。意义如题所述。
接下来 m m m 行,每行两个坐标 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 和 ( x 2 , y 2 ) (x_2,y_2) (x2,y2),代表一块地毯,左上角是 ( x 1 , y 1 ) (x_1,y_1) (x1,y1),右下角是 ( x 2 , y 2 ) (x_2,y_2) (x2,y2)。
输出格式
输出 n n n 行,每行 n n n 个正整数。
第 i i i 行第 j j j 列的正整数表示 ( i , j ) (i,j) (i,j) 这个格子被多少个地毯覆盖。
输入输出样例 #1
输入 #1
5 3
2 2 3 3
3 3 5 5
1 2 1 4
输出 #1
0 1 1 1 0
0 1 1 0 0
0 1 2 1 1
0 0 1 1 1
0 0 1 1 1
说明/提示
样例解释
覆盖第一个地毯后:
0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 |
---|---|---|---|---|
0 0 0 | 1 1 1 | 1 1 1 | 0 0 0 | 0 0 0 |
0 0 0 | 1 1 1 | 1 1 1 | 0 0 0 | 0 0 0 |
0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 |
0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 |
覆盖第一、二个地毯后:
0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 |
---|---|---|---|---|
0 0 0 | 1 1 1 | 1 1 1 | 0 0 0 | 0 0 0 |
0 0 0 | 1 1 1 | 2 2 2 | 1 1 1 | 1 1 1 |
0 0 0 | 0 0 0 | 1 1 1 | 1 1 1 | 1 1 1 |
0 0 0 | 0 0 0 | 1 1 1 | 1 1 1 | 1 1 1 |
覆盖所有地毯后:
0 0 0 | 1 1 1 | 1 1 1 | 1 1 1 | 0 0 0 |
---|---|---|---|---|
0 0 0 | 1 1 1 | 1 1 1 | 0 0 0 | 0 0 0 |
0 0 0 | 1 1 1 | 2 2 2 | 1 1 1 | 1 1 1 |
0 0 0 | 0 0 0 | 1 1 1 | 1 1 1 | 1 1 1 |
0 0 0 | 0 0 0 | 1 1 1 | 1 1 1 | 1 1 1 |
数据范围
对于 20 % 20\% 20% 的数据,有 n ≤ 50 n\le 50 n≤50, m ≤ 100 m\le 100 m≤100。
对于 100 % 100\% 100% 的数据,有 n , m ≤ 1000 n,m\le 1000 n,m≤1000。
代码
#include<iostream>
using namespace std;
const int Maxn = 1000 + 10, Maxm = 1000 + 10;
int n, m;
int b[Maxn][Maxm];
void insert(int x1, int y1, int x2, int y2, int c){
b[x1][y1] += c;
b[x1][y2 + 1] -= c;
b[x2 + 1][y1] -= c;
b[x2 + 1][y2 + 1] += c;
}
int main(){
cin >> n >> m;
for(int i = 0; i < m; i ++){
int x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
insert(x1, y1, x2, y2, 1);
}
for(int i = 1; i <= n; i ++){
for(int j = 1; j <= n; j ++){
b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];
cout << b[i][j] << " ";
}
puts("");
}
return 0;
}
结果