CF617E XOR and Favorite Number(异或前缀和+莫队)

原题连接

思路:

莫队的思路还是比较好想的,对给出的序列求前缀和之后,如果 a i ⊕ a i + 1 ⊕ a i + 2 … … ⊕ a j = k a_{i} \oplus a_{i+1}\oplus a_{i+2}……\oplus a_{j}=k aiai+1ai+2aj=k,则 s u m i − 1 ⊕ s u m j = k sum_{i-1}\oplus sum_{j}=k sumi1sumj=k.
考虑离线计算,由于 x ⊕ y = z x\oplus y=z xy=z等价于 x ⊕ z = y x\oplus z=y xz=y,所以在增加一个数 x x x的时候,跟 x x x异或起来为 k k k的数都有贡献,用 c n t [ i ] cnt[i] cnt[i]表示 i i i出现的次数,维护一下就好了。
还有一种用树状数组+扫描线的写法,但是全 01 01 01序列就会被卡成 O ( n 2 ) O(n^2) O(n2),了解思想就好了吧。

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+7;
typedef long long ll;
ll n,m,k,a[maxn],ans[maxn],res,cnt[maxn*2],sum[maxn],len;
struct node{
	ll l,r,id;
}q[maxn];

bool cmp(node a,node b){
	if(a.l/len==b.l/len) return a.r<b.r;
	return a.l/len<b.l/len; 
}

void add(int x){
	res+=cnt[a[x]^k];
	cnt[a[x]]++;
}

void del(int x){
	cnt[a[x]]--;
	res-=cnt[a[x]^k];
}

int main(){
	cin>>n>>m>>k;
	len=sqrt(n);
	for(int i=1;i<=n;i++) cin>>a[i],a[i]^=a[i-1];
	for(int i=1;i<=m;i++){
		cin>>q[i].l>>q[i].r;q[i].id=i;
		q[i].l--;
	} 
	sort(q+1,q+1+m,cmp);
	int l=1,r=0;
	for(int i=1;i<=m;i++){
		int ql=q[i].l,qr=q[i].r;
		while(l<ql){
			del(l);l++;
		}
		while(l>ql){
			l--;add(l);
		}
		while(r>qr){
			del(r);r--;
		}
		while(r<qr){
			r++;add(r);
		}	
		ans[q[i].id]=res;
	}
	for(int i=1;i<=m;i++)
		cout<<ans[i]<<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙睡不醒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值