01分数约化
问题描述:
给定一张L个点、P条边的有向图,每个点都有一个权值f[i],每条边都有一个权值t[i]。
求图中的一个环,使“环上各点的权值之和”除以“环上各边的权值之和”最大。
输出这个最大值。
问题就是求 M A X ( Σ V e r t e x / Σ E d g e ) MAX(\Sigma Vertex/\Sigma Edge) MAX(ΣVertex/ΣEdge)
我们可以二分答案
Σ V e r t e x − m i d Σ E d g e = 0 \Sigma Vertex - mid \Sigma Edge = 0 ΣVertex−midΣEdge=0
把点权放在边权上 即每条边 d ( i , j ) = V e r t e x ( i ) − E d g e ( i , j ) d(i,j) = Vertex(i) - Edge(i,j) d(i,j)=Vertex(i)−Edge(i,j)
就把问题转化为 图中是否存在正环的问题 如果存在正环则 把二分范围变为 [ m i d , r ] [mid,r] [mid,r]
时间复杂度 O ( l o g n ∗ O ( s p f a ( ) ) ) O(logn *O(spfa())) O(logn∗O(spfa()))
代码实现:
//01 分数约化 转化为 二分+spfa找正环的问题
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <queue>
#include <cstdio>
using namespace std;
const int N = 1e3+10,M = 5e3+10;
int h[N],e[M],ne[M],val[M],idx;
int n,m;
double dis[N];
int cnt[N];
bool st[N];
int p[N];
void add(int a,int b,int c)
{
e[idx] = b,ne[idx] = h[a],val[idx] = c,h[a] = idx++;
}
bool spfa(double x)
{
queue<int> q;
for(int i=1;i<=n;i++)
q.push(i),cnt[i] = 0,st[i] = 1;
while(q.size())
{
int u = q.front();
q.pop();
st[u] = 0;
for(int i=h[u];~i;i=ne[i])
{
int j = e[i];
double c = p[u] - x*val[i];
if(dis[j]<dis[u]+c)
{
cnt[j] = cnt[u] + 1;
if(cnt[j]>=n)return true;
dis[j] = dis[u] + c;
if(!st[j])
{
st[j] = 1;
q.push(j);
}
}
}
}
return false;
}
int main()
{
memset(h,-1,sizeof h);
cin>>n>>m;
for(int i=1;i<=n;i++)
scanf("%d",&p[i]);
int a,b,c;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
double l = 0,r = 1e6+10;
while(r - l > 1e-4)
{
double mid = (r+l)/2;
if(spfa(mid))l = mid;
else r = mid;
}
printf("%.2lf\n",r);
return 0;
}