01分数约化问题一遍学会【模板】

01分数约化

问题描述:

给定一张L个点、P条边的有向图,每个点都有一个权值f[i],每条边都有一个权值t[i]。

求图中的一个环,使“环上各点的权值之和”除以“环上各边的权值之和”最大。

输出这个最大值。

问题就是求 M A X ( Σ V e r t e x / Σ E d g e ) MAX(\Sigma Vertex/\Sigma Edge) MAX(ΣVertex/ΣEdge)

我们可以二分答案

Σ V e r t e x − m i d Σ E d g e = 0 \Sigma Vertex - mid \Sigma Edge = 0 ΣVertexmidΣEdge=0

把点权放在边权上 即每条边 d ( i , j ) = V e r t e x ( i ) − E d g e ( i , j ) d(i,j) = Vertex(i) - Edge(i,j) d(i,j)=Vertex(i)Edge(i,j)

就把问题转化为 图中是否存在正环的问题 如果存在正环则 把二分范围变为 [ m i d , r ] [mid,r] [mid,r]

时间复杂度 O ( l o g n ∗ O ( s p f a ( ) ) ) O(logn *O(spfa())) O(lognO(spfa()))

代码实现:

//01 分数约化 转化为 二分+spfa找正环的问题

#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <queue>
#include <cstdio>
using namespace std;
const int N = 1e3+10,M = 5e3+10;
int h[N],e[M],ne[M],val[M],idx;
int n,m;
double dis[N];
int cnt[N];
bool st[N];
int p[N];
void add(int a,int b,int c)
{
    e[idx] = b,ne[idx] = h[a],val[idx] = c,h[a] = idx++;
}


bool spfa(double x)
{
    queue<int> q;
    for(int i=1;i<=n;i++)
        q.push(i),cnt[i] = 0,st[i] = 1;
    
    while(q.size())
    {
        int u = q.front();
        q.pop();
        st[u] = 0;
        for(int i=h[u];~i;i=ne[i])
        {
            int j = e[i];
            double c = p[u] - x*val[i];
            if(dis[j]<dis[u]+c)
            {
                cnt[j] = cnt[u] + 1;
                if(cnt[j]>=n)return true;
                dis[j] = dis[u] + c;
                if(!st[j])
                {
                    st[j] = 1;
                    q.push(j);
                }
            }
        }
    }
    return false;
}

int main()
{
    memset(h,-1,sizeof h);
    cin>>n>>m;
    for(int i=1;i<=n;i++)
        scanf("%d",&p[i]);
    
    int a,b,c;
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
    }
    
    double l = 0,r = 1e6+10;
    while(r - l > 1e-4)
    {
        double mid = (r+l)/2;
        if(spfa(mid))l = mid;
        else r = mid;
    }
    printf("%.2lf\n",r);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值