图解:
P问题:
那些可以在多项式时间
内解决的问题。
那什么是多项式时间呢?
答曰:时间复杂度如(n^2, n^4, n(log(n)) ) 都是多项式时间,如(2^n, n^n ) 就不是多项式时间
NP问题:
对于一类问题,我们可能没有一个已知且快速的方法得到问题的答案,但是如果给我们一个候选解
,我们能够在多项式时间内验证这个侯选解到底是不是问题的答案。
NPC问题:
存在这样一个NP问题,所有的NP问题都可以约化
成它。换句话说,只要解决了这个问题,那么所有的NP问题都解决了。
NP-hard问题:
所有NP问题都能在多项式时间复杂度内归约
到的问题
规约/约化:
问题A可以约化为问题B,称为“问题A可规约为问题B”,可以理解为问题B的解一定就是问题A的解,因此解决A不会难于解决B。由此可知问题B的时间复杂度一定大于等于问题A。