提取影像的每个像元的NDVI波段值及日期
函数如下:
//函数:提取影像的每个像元的NDVI波段值及日期
var extractPixelValues = function(image) {
var date = image.date().format('YYYY-MM-dd');
// 使用 sampleRegions 提取每个像元的 NDVI 和 fitted 波段的值
var pixelValues = image.addBands(image.select('NDVI')).sample({
region: cities, // 定义感兴趣的区域
scale: 30, // 分辨率
projection: 'EPSG:4326', // 使用WGS84投影
geometries: false, // 保留几何信息(像元的位置)
});
// 为每个像元添加日期信息
return pixelValues.map(function(feature) {
return feature.set('date', date);
});
};
// 批处理限制,设置为每批次处理2幅影像
var batchlimit = 2;
// 分批次处理影像集合的函数
var batchProcess_all_s2 = function(collection, batchlimit) {
// 获取影像集合的总大小
var size = collection.size().getInfo();
// 计算批次数
var batches = Math.ceil(size / batchlimit);
for (var i = 0; i < batches; i++) {
// 计算当前批次的起始位置
var start = i * batchlimit;
// 将集合转换为列表,并获取当前批次的影像子集
var imageList = collection.toList(size);
var subList = imageList.slice(start, start + batchlimit);
// 将列表转换回 ImageCollection
var subCollection = ee.ImageCollection.fromImages(subList.map(function(image) {
return ee.Image(image);
}));
// 将函数应用于子集合中的每个影像
var extractedPixelValues = subCollection.map(extractPixelValues).flatten();
// 导出当前批次的提取结果到 Google Drive
Export.table.toDrive({
collection: extractedPixelValues,
description: 'Sentinel2_Export_Batch_' + (i + 1),
folder:'NDVI',
selectors: ['date', 'NDVI', ],
fileFormat: 'CSV'
});
}
};
// 执行批处理,处理整个影像集合
batchProcess_all_s2(Sentinel2_NDVI, batchlimit);
注:Sentinel2_NDVI要包含NDVI波段
运行结果: