类扩展欧几里德 D - It‘s a Mod, Mod, Mod, Mod World

在这里插入图片描述
在这里插入图片描述

D - It’s a Mod, Mod, Mod, Mod World
在这里插入图片描述
化简
∑ i = 1 n ⌊ ( p ∗ i m o d    q ) ⌋ \sum_{i=1}^{n} {\lfloor(p*i\mod q)\rfloor} i=1n(pimodq)=
∑ i = 1 n p ∗ i − ⌊ p ∗ i q ⌋ \sum_{i=1}^{n}p*i- {\lfloor\frac {p*i} {q}\rfloor} i=1npiqpi*q=
( n + 1 ) n 2 \frac {(n+1)n} {2} 2(n+1)n*p-q ∑ i = 1 n ⌊ p ∗ i q ⌋ \sum_{i=1}^{n}{\lfloor\frac {p*i} {q}\rfloor} i=1nqpi
后面那部分式子就可以用类欧几里德来计算。

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
using namespace std;

typedef long long ll;

ll lexgcd(ll a,ll b,ll c,ll n)
{
    if(!a)
    {
        return (n+1)*(b/c);
    }
    if(a>=c||b>=c)
    {
        return (n*(n+1)/2*(a/c))+(n+1)*(b/c)+lexgcd(a%c,b%c,c,n);
    }
    int m=(a*n+b)/c;
    return n*m-lexgcd(c,c-b-1,a,m-1);
}
int main()
{
    int t;
    cin>>t;
    while(t--)
    {
        ll p,q,n;
        cin>>p>>q>>n;
        ll ans=0;
        ans=(n+1)*n/2*p-q*lexgcd(p,0,q,n);
        cout<<ans<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值