人工智能实践——第十周:RNN

本文详细介绍了循环神经网络(RNN)的工作原理,包括RNN的结构、参数解析以及在处理序列数据时如何利用时间信息。通过实例展示了如何使用TensorFlow的`tf.keras.layers`构建RNN模型,包括`Embedding`和`SimpleRNN`层的用法,并探讨了RNN的超参数和输入格式。此外,还提到了在实际应用中需要注意的关键点。
摘要由CSDN通过智能技术生成

最近发生了很多事情,从上个周开始,身体不适,跑了几次校医院,还跑了一趟北三院。昨天跑步的时候把脚崴了,今天去校医院检查居然骨折了( ▼-▼ ),难受。昨天还活蹦乱跳,今天就一瘸一拐。所以这两天都没有写leetcode,机器学习也没有进展。明天开始回归正常!

循环神经网络

RNN:借助循环核(Cell )提取特征后,送入全连接网(Dense)
提取时间信息,循环核参数时间共享

在这里插入图片描述
RNN是在单个神经元上,除输入输出外, 添加一条自循环回路表征当前状态,当前状态会影响其未来状态。ht=f(ht-1 ,xt)
使得某一时刻神经元状态ht ,记忆力之前各时刻的状态h1,h2,…,ht-1
可以看到,存在两个参数wxh,whh,why。可以看到第一个参数代表是和x或者h的同维向量,第二个参数是对应的是h还是y
在这里插入图片描述
在这里插入图片描述
又因为xt,ht-1都是一维向量准确的说为相同一维的,所以可以拼接成一维向量作为循环体的全连接层神经网络的输入。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值