一文彻底搞懂RNN - 模型架构(Model Architecture)

Recurrent Neural Network

RNN是一种特殊的神经网络结构,它通过在时间上的展开来处理序列数据中的依赖关系。在每个时间步(time step),RNN都会接收一个输入(比如句子中的一个单词),并输出一个结果(比如下一个单词的预测)。与传统的前馈神经网络(Feedforward Neural Network, FNN)不同,RNN在每个时间步都会保留一个隐藏状态(hidden state),这个隐藏状态包含了之前所有时间步的信息,并用于计算当前时间步的输出和下一个时间步的隐藏状态。

RNN vs FFNN

一、FFNN(前馈神经网络)的局限性

前馈神经网络(Feedforward Neural Network, FFNN):前馈神经网络(FFNN),也称为多层感知机(MLP),通过多个隐藏层将输入数据映射到输出数据。它主要由输入层、一个或多个隐藏层以及输出层组成,数据在网络中只能单向流动,即从输入层经过隐藏层最终到达输出层,没有反馈环路

FFNN

FFNN的局限性FFNN这种结构在处理序列数据时存在明显的局限性因为每个输入都是独立处理的,并且没有考虑它们之间的顺序或上下文关系。这意味着无法有效处理顺序数据并捕获输入之间的依赖关系。例如语言建模、机器翻译、语音识别、时间序列分析以及许多其他需要顺序处理的应用程序。

Sequence Data

二、RNN(循环神经网络)

RNN的核心思想为了解决FFNN在处理序列数据时的局限性,循环神经网络(RNN)被引入。RNN的核心思想是在隐藏层之间引入循环连接,使得每个时间步的隐藏状态不仅取决于当前时间步的输入,还取决于前一个时间步的隐藏状态

RNN 最主要也是最重要的特征是它的隐藏状态,它可以记住有关序列的一些信息。该状态也称为记忆状态,因为它会记住网络的先前输入。

RNN的隐藏状态

RNN的模型架构:RNN通过其隐藏层的隐藏状态捕捉输入序列的时序依赖性,并基于当前输入和前一隐藏状态来生成输出序列的预测结果。

  • 输入层:接收输入数据,并将其传递给隐藏层。输入不仅仅是静态的,还包含着序列中的历史信息

  • 隐藏层:隐藏状态是核心部分,捕捉时序依赖性。隐藏层的输出不仅取决于当前的输入,还取决于前一时刻的隐藏状态

  • 输出层:根据隐藏层的输出生成最终的预测结果。

输入层- 隐藏层 - 输出层

RNN的工作原理通过一个具体的案例来看看RNN的工作原理。例如,用户说了一句“what time is it?”,需要判断用户的说话意图,是问时间,还是问天气?

  • 输入层:先对句子“what time is it ?” 进行分词,然后按照顺序输入。

对句子进行分词

  • 隐藏层:在此过程中,我们注意到前面的所有输入都对后续的输出产生了影响。圆形隐藏层不仅考虑了当前的输入,还综合了隐藏状态存储的之前所有的输入信息,能够利用历史信息来影响未来的输出

Hidden State存储了之前所有的输入信息

  • 输出层:生成最终的预测结果:Asking for the time。

输出结果:Asking for the time

三、RNN(循环神经网络)的局限性

RNN的局限性在于梯度问题导致难以学习长期依赖,长期记忆能力不足,且并行处理能力差。

1. 梯度消失和梯度爆炸问题

  • 梯度消失:在RNN中,由于参数共享和多次连乘的特性,在反向传播过程中,梯度值可能会随着时间步的增加而指数级衰减,最终趋近于0。这导致RNN难以学习到长期依赖关系,因为较早时间步的输入在反向传播时其梯度几乎为0,无法对这些输入进行有效的权重更新。

  • 梯度爆炸:与梯度消失相反,梯度爆炸是指在反向传播过程中,梯度值可能会随着时间步的增加而快速增长到非常大,导致模型训练不稳定甚至无法收敛。

2. 长期依赖捕捉能力有限

  • 由于梯度消失的问题,RNN在处理长序列时难以有效地捕捉到长期依赖关系。这意味着如果输入序列中的某个元素与输出之间存在长时间的间隔,RNN可能无法有效地学习到这两者之间的关系,从而限制了其在处理长序列数据时的性能。

3. 并行处理能力较差

  • RNN的计算是顺序进行的,即每个时间步的输出都依赖于前一个时间步的计算结果。这种顺序计算的方式限制了RNN的并行处理能力,使得在大规模数据集和复杂模型的情况下,RNN的训练和推理速度相对较慢。

梯度消失和梯度爆炸

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

RNN-LSTM是一种基于循环神经网络(RNN)的深度学习模型,用于序列数据的预测和分类。LSTM(长短时记忆网络)是RNN的一种特殊形式,它可以解决传统RNN中的梯度消失问题,使得模型可以更好地捕捉长期依赖关系。RNN-LSTM模型在时间序列预测中表现出色,尤其是在短期负荷预测和金融时间序列预测中。 在RNN-LSTM模型中,输入数据被分成时间步长,每个时间步长都有一个输入和一个输出。LSTM单元在每个时间步长中接收输入和前一个时间步长的隐藏状态,并输出当前时间步长的隐藏状态和预测结果。在训练过程中,模型通过反向传播算法来更新权重和偏置,以最小化预测结果与真实结果之间的误差。 下面是一个简单的RNN-LSTM模型的代码示例: ```python from keras.models import Sequential from keras.layers import LSTM, Dense # 定义模型 model = Sequential() model.add(LSTM(50, activation='relu', input_shape=(n_steps, n_features))) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') # 训练模型 model.fit(X_train, y_train, epochs=100, verbose=0) # 预测结果 y_pred = model.predict(X_test) ``` 其中,LSTM层定义了50个神经元,使用ReLU激活函数。输入数据的形状为(n_steps, n_features),其中n_steps表示时间步长,n_features表示每个时间步长的特征数。模型使用均方误差(MSE)作为损失函数,Adam优化器进行权重更新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值