自动调参工具 NNI的使用

1. 首先创建一个search—space 的json文件

like this

{
    "batch_size": {"_type":"choice", "_value": [2000,5000,10000]},
    "hidden_size1_lstm":{"_type":"choice","_value":[32, 64, 128]},
    "hidden_size2_lstm":{"_type":"choice","_value":[32, 64, 128]},
    "number_layer":{"_type":"choice","_value":[2,4,8]},
    "seed":{"_type":"choice","_value":[1,2020,909305]},
    "lr":{"_type":"choice","_value":[0.0001, 0.001, 0.01, 0.1]},
    "bi":{"_type":"choice","_value":[1, 0]}

}

2.编写yml配置文件

like this
注释有详细解释

authorName: default
experimentName: PyTorch PAK_ETA Model
trialConcurrency: 1
maxExecDuration: 3h #最大执行时间
maxTrialNum: 10  #尝试的最多组合数
#choice: local, remote, pai
trainingServicePlatform: local
searchSpacePath: search_space.json ##指明space位置!!!
#choice: true, false
useAnnotation: false
tuner:
  #choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner, GPTuner
  #SMAC (SMAC should be installed through nnictl)
  builtinTunerName: TPE  ##选择参数的方式
  classArgs:
    #choice: maximize, minimize
    optimize_mode: minimize ##根据损失函数返回结果 mse之类的loss越小越好,acc越大越好 
trial:
  command: python3 PAK.py #指明位置
  codeDir: .
  gpuNum: 0

在python文件中构建参数,只需要三个主要函数,同时最好学会args的使用

"""
A deep MNIST classifier using convolutional layers.

This file is a modification of the official pytorch mnist example:
https://github.com/pytorch/examples/blob/master/mnist/main.py
"""

import os
import argparse
import logging
import nni
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from nni.utils import merge_parameter
from torchvision import datasets, transforms

logger = logging.getLogger('mnist_AutoML')


class Net(nn.Module):
    def __init__(self, hidden_size):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.Linear(4*4*50, hidden_size)
        self.fc2 = nn.Linear(hidden_size, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


def train(args, model, device, train_loader, optimizer, epoch):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        if (args['batch_num'] is not None) and batch_idx >= args['batch_num']:
            break
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args['log_interval'] == 0:
            logger.info('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(args, model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            # sum up batch loss
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            # get the index of the max log-probability
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(test_loader.dataset)

    accuracy = 100. * correct / len(test_loader.dataset)

    logger.info('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset), accuracy))

    return accuracy


def main(args):
    use_cuda = not args['no_cuda'] and torch.cuda.is_available()

    torch.manual_seed(args['seed'])

    device = torch.device("cuda" if use_cuda else "cpu")

    kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}

    data_dir = args['data_dir']

    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST(data_dir, train=True, download=True,
                       transform=transforms.Compose([
                           transforms.ToTensor(),
                           transforms.Normalize((0.1307,), (0.3081,))
                       ])),
        batch_size=args['batch_size'], shuffle=True, **kwargs)
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST(data_dir, train=False, transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307,), (0.3081,))
        ])),
        batch_size=1000, shuffle=True, **kwargs)

    hidden_size = args['hidden_size']

    model = Net(hidden_size=hidden_size).to(device)
    optimizer = optim.SGD(model.parameters(), lr=args['lr'],
                          momentum=args['momentum'])

    for epoch in range(1, args['epochs'] + 1):
        train(args, model, device, train_loader, optimizer, epoch)
        test_acc = test(args, model, device, test_loader)

        # report intermediate result
        nni.report_intermediate_result(test_acc)
        logger.debug('test accuracy %g', test_acc)
        logger.debug('Pipe send intermediate result done.')

    # report final result
    nni.report_final_result(test_acc)
    logger.debug('Final result is %g', test_acc)
    logger.debug('Send final result done.')


def get_params():
    # Training settings
    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument("--data_dir", type=str,
                        default='./data', help="data directory")
    parser.add_argument('--batch_size', type=int, default=64, metavar='N',
                        help='input batch size for training (default: 64)')
    parser.add_argument("--batch_num", type=int, default=None)
    parser.add_argument("--hidden_size", type=int, default=512, metavar='N',
                        help='hidden layer size (default: 512)')
    parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
                        help='learning rate (default: 0.01)')
    parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
                        help='SGD momentum (default: 0.5)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--no_cuda', action='store_true', default=False,
                        help='disables CUDA training')
    parser.add_argument('--log_interval', type=int, default=1000, metavar='N',
                        help='how many batches to wait before logging training status')


    args, _ = parser.parse_known_args()
    return args


if __name__ == '__main__':
    try:
        # get parameters form tuner
        tuner_params = nni.get_next_parameter()
        logger.(tuner_params)
        params = vars(merge_parameter(get_params(), tuner_params))
        print(params)
        main(params)
    except Exception as exception:
        logger.exception(exception)
        raise

4.最后一步,启动!!!

nnictl create --config config.yml --port 1825

(端口号自己定义)

其他操作:
You can use these commands to get more information about the experiment

     commands                       description
  1. nnictl experiment show -----> show the information of experiments
  2. nnictl trial ls ----> list all of trial jobs
  3. nnictl top ----> monitor the status of running experiments
  4. nnictl log stderr ----> show stderr log content
  5. nnictl log stdout —> show stdout log content
  6. nnictl stop ----> stop an experiment
  7. nnictl trial kill ----> kill a trial job by id
  8. nnictl --help ----> get help information about nnictl

(记得先装好nni ~~捂脸)
哒哒哒:
在这里插入图片描述

©️2020 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值