EM算法

前提: EM算法需要两个东西,其解决方法就是先随机初始化 θ A \theta_{A} θA, θ B \theta_{B} θB, 然后用去估计 Z, 然后基于 Z 按照最大似然概率去估计新的 θ A \theta_{A} θA, θ B \theta_{B} θB,循环至收敛。

琴声不等式:
Φ \Phi Φ 是凸函数,那么对内部元素求和之后取 Φ \Phi Φ小于先取 Φ \Phi Φ再求和
在这里插入图片描述
EM核心idea就是 通过 引入Q(zi) ,然后使用Jensen 不等式(将 l o g ∑ log \sum log —> ∑ l o g \sum log log 形式,便于求导计算),并 推出 非完全数据似然logP(Y)的下界函数J(Z, θ \theta θ)。

下界函数J(Z, θ \theta θ),它是由Q(zi) 和 \theta组成二元函数。同时优化Q(zi) 和 \theta很困难,那么就分开优化。E步优化Q(zi) ,而M步优化\theta。

E步:引入Q(zi)分布时,Q(zi)的形式是个谜团,那如何选择合适的Q呢?答案就是在E步。E步目的是使得Jensen 等号成立。此时,Jensen 不等式 等号成立的条件就是 Q ( z i ) = P ( z i ∣ y i ; θ ) Q(z_i) = P(z_i|y_i; \theta) Q(zi)=P(ziyi;θ)。而 P ( z i ∣ y i ; θ ) P(z_i|yi; \theta) P(ziyi;θ)形式很巧妙,就是先验P(z)在given y i 数 据 和 上 一 步 参 数 θ y_i数据和上一步参数\theta yiθ下后验。
M步:在Q(zi) = P ( z i ∣ y i P(z_{i}|y_{i} P(ziyi; θ \theta θ)时,问题退化到了最大似然估计。然后,使用求导=0,将模型的 θ \theta θ更新

https://zhuanlan.zhihu.com/p/40991784

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值