模型总览
(感知机居然是硬输出 QaQ)
感知机算法
是有一个sign,所以直接转化成硬分类了
最终就是一个sgd优化的错误分类,使其减小
线性判别分析
投影到一个向量上,实现类内小,类间大,这个等价于求感知机的法线,不够更加严格一点,约束比较紧
逻辑回归
最终MLE其实就是一个-cross_entropy
高斯判别分析
高斯判别分析假定数据在condition on y的情况下,服从高维高斯分布,先验是
P
(
y
)
P(y)
P(y),后验是
P
(
y
∣
x
)
P(y|x)
P(y∣x),使用MAP估计参数,这里参数较多
朴素贝叶斯
朴素贝叶斯假定给定y的情况下,x的每一个维度独立,因而可以根据独立性假设得到
P
(
X
∣
y
)
P(X|y)
P(X∣y) =
∏
i
=
1
p
\prod_{i=1}^p
∏i=1pP(
x
i
∣
y
x_i|y
xi∣y), 进而再用极大似然估计估计出参数即可!