余子式:在n阶行列式D中,划去元素aij所在的第i行和第j列的元素,剩下的(n-1)^2个元素保持原来的相对位置不变构成的一个n-1阶行列式,称为元素aij的余子式,记为Mij。
代数余子式:Aij=(-1)^(i+j)*Mij成为元素aij的代数余子式。
行列式按行(列)展开法则:
行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即
D=ai1Ai1+ai2Ai2+...+ainAin 或 D=a1jA1j+a2jA2j+...anjAnj
余子式:在n阶行列式D中,划去元素aij所在的第i行和第j列的元素,剩下的(n-1)^2个元素保持原来的相对位置不变构成的一个n-1阶行列式,称为元素aij的余子式,记为Mij。
代数余子式:Aij=(-1)^(i+j)*Mij成为元素aij的代数余子式。
行列式按行(列)展开法则:
行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即
D=ai1Ai1+ai2Ai2+...+ainAin 或 D=a1jA1j+a2jA2j+...anjAnj