线性代数之余子式&代数余子式

线性代数第二章之余子式与代数余子式


前言

对于线性代数凡是提及余子式以及代数余子式那么就必会涉及到伴随矩阵、行列式、特征值、逆矩阵等等一系列的问题。


提示:以下是本篇文章正文内容,下面案例可供参考

一、与行列式的不清不楚!

先上图:

        对于式子一等式左边我们熟知是运用行列式定理按列展开。那么我们把改行元素替换后的行列式该如何计算呢?

        其中*处表示元素不变,等式一&等式二的区别仅在于第i行的元素a_{i1},a_{i2},\ldots ,a_{in}换成了k_{1},k_{2},\ldots ,k_{n},这样,给出不同的系数k_{1},k_{2},\ldots ,k_{n},就得到了不同的行列式。若要求k_{1}M_{i1},k_{2}M_{i2},\ldots ,k_{n}M_{in},只需用M_{ij}=(-1)^{i+j}A_{ij}化为关于A_{ij}的线性组合即可。

        当然,夸夸其谈都不如一个栗子来得实在:

\left.D=\left|\begin{matrix}1&1&1\\1&2&5\\34&1&34\end{matrix}\right.\right|,则5A_{11}+2A_{12}+A_{13}=?

        根据上述定理题目所给的5A_{11}+2A_{12}+A_{13}涉及原矩阵第一行的代数余子式就等价的将原矩阵得第一行元素1,1,1替换成5,2,1那么矩阵就变成\left.D`=\left|\begin{matrix}5&2&1\\1&2&5\\34&1&34\end{matrix}\right.\right|  而题目所求即为矩阵D`  得行列式|D`|=  520

剩余则需同学自行与题目的博弈中细细体会其中的奥妙。

二、与矩阵的缠绵~

1.公式:A^{*}=|A|A^{-1}其中(|A|≠0

        由于A^{*}A_{ij}组成,用此公式求出A^{*},即可得到所有的A_{ij},但要注意,此方法要求|A|\neq 0,这是前提,也是一种限制。

三、与特征值的携手.

此处涉及与后续矩阵的特征值的综合,初学者见此可做下标记待学习相关知识后再慕然回首必会春暖花开。

        设A为三阶矩阵,当A为可逆矩阵时,记其特征值为\lambda_{1},\lambda_{2},\lambda_{3},则A^{-1}的特征值为\lambda_1^{-1},\lambda_2^{-1},\lambda_3^{-1},且由A^{*}=|A|A^{-1}=\lambda_{1}\lambda_{2}\lambda_{3}A^{-1},可知A^{*}的特征值为:

\lambda_{1}^{*}=\lambda_{1}\lambda_{2}\lambda_{3}\cdot \lambda_{1}^{-1}=\lambda_{2}\lambda_{3}\lambda_{2}^{*}=\lambda_{1}\lambda_{2}\lambda_{3}\cdot \lambda_{2}^{-1}=\lambda_{1}\lambda_{3}\lambda_{3}^{*}=\lambda_{1}\lambda_{2}\lambda_{3}\cdot \lambda_{3}^{-1}=\lambda_{1}\lambda_{2}

故由:A^{*}=\begin{bmatrix}A_{11}A_{12}A_{13}\\A_{21}A_{22}A_{23}\\A_{31}A_{32}A_{33}\end{bmatrix}

知:A_{11}+A_{22}+A_{33}=tr(A^{*})=\lambda_{1}^{*}+\lambda_{2}^{*}+\lambda_{3}^{*}=\lambda_2\lambda_3+\lambda_1\lambda_3+\lambda_1\lambda_2

四、与余子式的相爱相杀

由于M_{ij}=(-1)^{i+j}A_{ij},故先求出A_{ij},乘(-1)^{i+j}即可。


总结

同学需结合具体题目练习、体会、领悟、拍案叫绝!

不足之处望大佬不吝赐教。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值