OpenVINO学习笔记

1、导出onnx文件

import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = torch.load("model_data/last_model.pth")  # pytorch模型加载
batch_size = 1  # 批处理大小
input_shape = (3, 224, 224)  # 输入数据,改成自己的输入shape
model.eval()
x = torch.randn(batch_size, *input_shape)  # 生成张量
x = x.to(device)
export_onnx_file = "model.onnx"  # 目的ONNX文件名
torch.onnx.export(model,
                  x,
                  export_onnx_file,
                  opset_version=10,
                  do_constant_folding=True,  # 是否执行常量折叠优化
                  input_names=["input"],  # 输入名
                  output_names=["output"],  # 输出名
                  dynamic_axes={"input": {0: "batch_size"},  # 批处理变量
                                "output": {0: "batch_size"}})

2、测试onnx文件输出

import onnxruntime as ort
ort_session = ort.InferenceSession('resnet50.onnx')
outputs = ort_session.run(None, {'input': test_arr})
print('onnx result:', outputs[0])

3、onnx文件转为xml文件和bin文件

from openvino.runtime import Core
from openvino.runtime import serialize

ie = Core()
onnx_model_path = "model.onnx"
model_onnx = ie.read_model(model=onnx_model_path)
compiled_model_onnx = ie.compile_model(model=model_onnx, device_name="CPU")
serialize(model=model_onnx, xml_path="model.xml", bin_path="model.bin",
          version="UNSPECIFIED")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值